
Enabling Continuous Improvement in
Machine Learning Workflows through

Data Logging and Monitoring

Swaraj Shaw

Dublin Business School

This dissertation is submitted for the degree of
Master of Science

January 2023

Declaration

I hereby declare that except where specific reference is made to the work of others, the
contents of this dissertation are original and have not been submitted in whole or in part
for consideration for any other degree or qualification in this, or any other university. This
dissertation is my own work and contains nothing which is the outcome of work done in
collaboration with others, except as specified in the text and Acknowledgements.

Swaraj Shaw
January 2023

Acknowledgements

I am grateful to my supervisor, Professor Dr. Assem Abdelhak, for his guidance and support
throughout this project. His expertise in the field of machine learning and data science was
invaluable in helping me to develop and refine my research ideas. He provided valuable
guidance and direction to my project, helping me to organize our work in a logical and
coherent manner. He ensured providing regular feedback and support, and made sure that I
was making progress towards our goals and deadlines to high standards.
I am grateful to my previous manager Mr. Rahul Gupta, I would like to thank him for his
support and guidance in brainstorming the topic of my thesis. His insights and suggestions
were invaluable in helping me to refine my ideas and focus on a topic that was both interesting
and relevant. His guidance and support, has been instrumental in my progress and success in
the field of Machine Learning and AI. I am grateful to have had such a knowledgeable and
supportive mentor.
I would also like to thank my family and friends for their unwavering support and encourage-
ment throughout this process. I am deeply grateful to my sister for her selfless sacrifice and
support. Her determination and perseverance enabled me to pursue my dreams and achieve
my goals. Their love and understanding made it possible for me to focus on my work and
achieve this significant milestone.
Finally, I would like to acknowledge the support of the wider research community, whose
contributions to the field of machine learning have made this project possible. I am grateful
to have been able to build upon the work of others, and hope that my own contributions will
be of value to future researchers. Thank you all for your help and support. This thesis would
not have been possible without you.

Abstract

Recent advances in machine learning (ML) have made it possible to build complex, data-
intensive models that can be deployed in real-world applications. However, deploying these
models in production environments presents significant challenges, including the need for
effective MLOps (machine learning operations) practices to manage the end-to-end lifecycle
of ML models. In this thesis, we focus on the importance of data logging and monitoring in
MLOps, and present a comprehensive solution based on open-source tools such as MLFlow
and WhyLogs. Our solution is designed to be production-ready and can be easily integrated
into existing enterprise environments, such as Microsoft Azure with Docker containers. We
also address the issue of model drift, which can arise when the distribution of data used
for training differs from the distribution of data used for inference. Our solution includes
techniques for detecting and mitigating drift, ensuring that ML models remain accurate and
reliable over time. Overall, this thesis demonstrates the importance of effective data logging
and monitoring in MLOps, and presents a practical solution that can be used in real-world
production environments.

Keywords : MLOps, Data Logging, Data Monitoring, MLFlow, WhyLogs, Open Source,
Enterprise, Production Ready, Machine Learning Workflows, Microsoft Azure, Docker, Drift,
Minio, MySQL.

Table of contents

List of figures xiii

List of tables xv

1 Introduction 1
1.1 The Evolution of Machine Learning and Its Adoption in Business 1
1.2 Advantages of Open Source Technology for Machine Learning 2
1.3 Key Strategies adopted by Enterprises in building a robust ML Pipeline . . 2
1.4 Ensuring Continuous Maintenance of Deep Learning Models 3
1.5 PyTorch vs TensorFlow: Choosing a Deep Learning Framework 4
1.6 AI and Deep Learning for News Classification 4
1.7 Benefits of Cloud-Based Machine Learning Infrastructure 5
1.8 Factors that Contribute to Deep Learning Model Failure in Production . . . 6
1.9 Data Logging and Monitoring . 7

2 Literature Review 9
2.1 Introduction . 9
2.2 Data Logging and Monitoring in MLOps 9
2.3 MLFlow and WhyLogs . 10
2.4 Enterprise Machine Learning Workflows 10
2.5 Production-Ready Machine Learning . 10
2.6 Microsoft Azure Machine Learning . 10
2.7 Docker for Machine Learning . 11
2.8 Drift Detection in Machine Learning Models 11
2.9 Minio . 11
2.10 Open Source Machine Learning . 12
2.11 MLOps in the Cloud . 12
2.12 Conclusion . 12

x Table of contents

3 State of the Art 13
3.1 Self-Attention in Transformers: A Deep Learning Revolution 13
3.2 Understanding BERT: A State-of-the-Art Natural Language Processing Model 14
3.3 BERT Architecture . 15
3.4 Comparing BERT Uncased and Cased Models 16
3.5 Fine-tuning BERT for News Classification 17
3.6 Managing Machine Learning Lifecycle with MLFlow 17
3.7 Tracking and Managing ML Experiments with MLFlow 18
3.8 Data Management with PyTorch’s Lightning Data Module 19

4 Problem Statement 21
4.1 Aim & Objective . 21
4.2 Scope & Limitations . 22

4.2.1 Scope of the Research . 22
4.2.2 Limitations . 22

5 Implementation 25
5.1 Architecture Diagram . 25
5.2 Pipeline Explanation . 26
5.3 Logging & Monitoring using MLFlow and WhyLogs 27
5.4 Dataset . 28

5.4.1 20NewsGroups . 28
5.4.2 AG News . 29

5.5 Azure Docker Deployment . 30
5.5.1 Azure Virtual Machine Configuration 30

5.6 Docker Deployment . 33
5.7 Data Monitoring using Whylogs . 37
5.8 Whylabs Data Profiling . 38
5.9 Minio: Distributed Object Storage . 40

6 Result & Analysis 43
6.1 Evaluation . 43

6.1.1 Model Comparison . 43
6.1.2 Data Profiling . 45

6.2 Conclusion . 48
6.3 Future Scope . 49

Table of contents xi

References 51

Appendix A Installation 53
A.1 Conda Requirement . 53
A.2 Python Environment Requirement . 53
A.3 Requirement . 54
A.4 Docker Compose Requirement . 54

Appendix B Code 59

Appendix C Deployment Code 63

Appendix D Data Profiling using WhyLabs 65

List of figures

3.1 Understanding BERT: A State-of-the-Art Natural Language Processing Model 15
3.2 BERT utilizing bidirectional context in NLP 16

5.1 Block diagram of the ML Workflow for solving a business problem through
data collection, preparation, and training of a machine learning model using
BERT and monitoring with a dashboard. 25

5.2 Proposed pipeline architecture with deployment in Docker Container on
Azure VM . 26

5.3 Create a resource on Azure VM . 30
5.4 Create a Ubuntu Server . 30
5.5 Virtual Machine Configuration Details . 31
5.6 Network Configuration of VM . 32
5.7 Allowing traffic to destination port . 32
5.8 Update Package Manager’s package Index 33
5.9 Docker Installation - 1 . 34
5.10 Docker Installation - 2 . 34
5.11 Docker Installation - 3 . 34
5.12 Docker Installation - 4 . 34
5.13 Test Docker Installation: Docker Installation - 5 34
5.14 Clone git repo and fetch codebase . 34
5.15 Start and run docker container . 36
5.16 Run the deployment pipeline . 36
5.17 Minio Storage . 40

6.1 Models runs . 44
6.2 Profiling Summary . 45
6.3 Drift Profiling . 46
6.4 Drift detected in the logged data . 47

xiv List of figures

6.5 Drift detected in the logged data at Whylogs Platform 47

List of tables

1.1 Pros and Cons of PyTorch and TensorFlow Frameworks 4

6.1 Model Runs with different parameters sorted by highest Avg Test Accuracy 44

Chapter 1

Introduction

1.1 The Evolution of Machine Learning and Its Adoption
in Business

Machine learning has come a long way since its inception in the 1950s. Initially, machine
learning algorithms were based on simple statistical models that could be trained on small
datasets to make predictions. However, as data availability and computing power increased,
more complex algorithms were developed, such as neural networks, which are based on
the structure of the human brain. These algorithms, known as deep learning models, have
achieved state-of-the-art performance in a wide range of tasks, such as image and speech
recognition.
The adoption of machine learning in businesses has also increased significantly in recent
years. Many companies are using machine learning to automate and optimize various busi-
ness processes, such as customer service, fraud detection, and supply chain management.
However, the deployment of machine learning models to production can be a time-consuming
and complex process, as it requires specialized infrastructure and expertise.
To address this challenge, many companies are turning to cloud computing platforms, which
provide scalable and flexible infrastructure for machine learning. These platforms allow
companies to easily train and deploy machine learning models, without the need to invest
in expensive hardware and software. This has greatly accelerated the adoption of machine
learning in businesses, and has enabled companies to quickly and easily leverage the power
of deep learning to improve their operations.

"Mastering others is strength. Mastering yourself is true power." - Lao Tzu

2 Introduction

1.2 Advantages of Open Source Technology for Machine
Learning

Open source technology refers to software that is freely available to use, modify, and
distribute. In contrast, enterprise software is proprietary and typically requires a license or
subscription fee. There are several benefits of using open source technology for machine
learning production pipelines. First, open source software is typically freely available, which
can greatly reduce the cost of using machine learning for businesses, especially small and
medium-sized businesses that may not have the resources to invest in expensive proprietary
software. Second, open source software is often developed and maintained by a large and
active community of users and developers, which can provide access to a wealth of knowledge
and expertise. This can be particularly beneficial for businesses looking to use machine
learning and deep learning, as there is a wealth of open source libraries and frameworks
that can be easily integrated into production pipelines. Third, open source software is
typically highly customizable and flexible, which allows businesses to easily adapt it to
their specific needs and requirements. This can be particularly useful for machine learning
production pipelines, as they often require specialized algorithms and processes that may
not be available in proprietary software. Overall, the use of open source technology can
greatly benefit businesses looking to use machine learning and deep learning to improve
their operations and grow their revenue. By leveraging the power of open source software,
businesses can build robust recommendation systems and other machine learning applications,
and improve their efficiency and competitiveness in the market.

1.3 Key Strategies adopted by Enterprises in building a
robust ML Pipeline

There are several key strategies that companies use to improve the performance of deep
learning models. These strategies include:

1. Data collection and pre-processing: The quality and quantity of the data used to train
a deep learning model is critical to its performance. Companies often use large and
diverse datasets to train their models, and carefully pre-process the data to ensure that
it is clean, consistent, and representative of the task at hand.

2. Model architecture and hyperparameter optimization: The architecture and config-
uration of a deep learning model can greatly impact its performance. Companies

1.4 Ensuring Continuous Maintenance of Deep Learning Models 3

often experiment with different architectures and hyperparameters to find the best
configuration for their specific use case. This can be done using techniques such as
grid search, random search, and Bayesian optimization.

3. Transfer learning and model ensembling: Transfer learning involves using a pre-trained
model as a starting point for training a new model, which can greatly reduce the
amount of data and computation required. Model ensembling involves combining the
predictions of multiple models to improve performance, which can be particularly
effective for complex tasks.

4. Hardware and software optimization: The performance of deep learning models can
also be improved by using specialized hardware and software designed specifically for
deep learning. This can include GPUs, TPUs, and other hardware accelerators, as well
as specialized deep learning frameworks and libraries. Overall, these strategies can help
companies improve the performance of their deep learning models and achieve state-
of-the-art results on a wide range of tasks. By carefully selecting and pre-processing
data, optimizing model architecture and hyperparameters, and leveraging specialized
hardware and software, companies can build highly effective deep learning models
that can drive business value and growth.

1.4 Ensuring Continuous Maintenance of Deep Learning
Models

MLOps (Machine Learning Operations) is a set of practices and processes that aim to improve
the collaboration, automation, and integration of data science and machine learning into the
software development lifecycle. It is an essential part of the development and deployment
of deep learning models. Most companies often overlook the maintenance of deep learning
models after deployment, which can lead to a decline in model performance over time. This
can happen due to various reasons such as changes in the data distribution, new data, or
changes in the business requirements. This phenomenon is known as data or concept drift,
and it can significantly impact the performance of the model. In such scenarios, retraining the
model with the updated data and features is crucial to maintain the performance of the model.
This process is called continuous learning or continuous training, and it is an essential part
of MLOps. It helps companies to keep their deep learning models up-to-date and aligned
with the changing business requirements. By implementing MLOps practices, companies
can ensure that their deep learning models are continuously monitored, maintained, and

4 Introduction

retrained in production. This helps to avoid the impact of data or concept drift and maintain
the performance of the model over time.

1.5 PyTorch vs TensorFlow: Choosing a Deep Learning
Framework

PyTorch and TensorFlow are two popular deep learning frameworks that are used for both
research and production purposes. Both frameworks have their own strengths and weaknesses,
and the choice of which framework to use depends on the specific requirements of the project.
In terms of production, PyTorch is often considered more suitable for deploying models
in production environments because of its flexibility and ability to perform dynamic graph
computations [Paszke et al. (2017)]. It also offers a more intuitive API and allows for
easier debugging. On the other hand, TensorFlow is often considered more suitable for
large-scale production environments because of its robust and scalable architecture and
ability to perform efficient parallel computations [Abadi et al. (2016)]. In terms of research,
PyTorch is often considered more suitable because of its flexibility and ability to perform
dynamic graph computations, which allows for easier experimentation and prototyping.
It also offers a more intuitive API and allows for easier debugging. On the other hand,
TensorFlow is often considered more suitable for research because of its extensive support
for various platforms and hardware, including GPUs, TPUs [Jouppi et al. (2017)], and
distributed training. Overall, PyTorch is often considered a better choice for research and
experimentation, while TensorFlow is a better choice for large-scale production environments.

Pros of PyTorch Cons of PyTorch
Flexible and dynamic graph computations Less robust and scalable compared to TensorFlow
Intuitive API and easy debugging Limited support for distributed training
Suitable for research and experimentation
Pros of TensorFlow Cons of TensorFlow
Robust and scalable architecture More complex API compared to PyTorch
Extensive support for various platforms and hardware Not as flexible and dynamic as PyTorch
Suitable for large-scale production environments Less suitable for research and experimentation

Table 1.1 Pros and Cons of PyTorch and TensorFlow Frameworks

1.6 AI and Deep Learning for News Classification

News classification is an important task for several reasons. First, it allows for the efficient
organization and distribution of news content by automatically assigning each news article

1.7 Benefits of Cloud-Based Machine Learning Infrastructure 5

to one or more categories or topics [Wang et al. (2020)]. This makes it easier for readers to
find articles of interest and for news organizations to distribute content to the appropriate
channels. Second, news classification can be used to identify and filter out hate speech and
other forms of offensive or inappropriate content [Ali et al. (2022)]. By training a news
classification model to recognize hate speech, it can be used to automatically flag and remove
such content, helping to create a safer and more inclusive online environment. Third, news
classification can be used to identify and track trending news topics in real-time [Vyas (2022)].
By continuously classifying news articles and tracking the frequency of each category, it
is possible to identify which topics are currently receiving the most attention and highlight
them to readers. Finally, news classification can be used to automatically tag entities in
news articles, such as people, places, and organizations [Hung and Huy (2022)]. This can
be useful for a variety of applications, such as automatically generating links to relevant
information about the entities mentioned in an article or for conducting entity-level analysis
of news content. Overall, news classification using AI and deep learning models like BERT
can provide many benefits for both news organizations and readers. It can help to organize
and distribute news content, identify and filter out hate speech, track trending topics, and
automatically tag entities in articles.

1.7 Benefits of Cloud-Based Machine Learning Infrastruc-
ture

One of the main drawbacks of on-premises machine learning infrastructure is the high
upfront cost of purchasing and maintaining the hardware and software required for training
and deploying machine learning models. This can be a significant barrier for companies,
especially small and medium-sized businesses, that may not have the resources to invest in
such infrastructure.

In addition, on-premises infrastructure can be inflexible and difficult to scale, which
can hinder the development and deployment of machine learning models. As data volumes
and complexity increase, companies may need to constantly upgrade and expand their
on-premises infrastructure, which can be time-consuming and expensive.

In contrast, cloud-based machine learning platforms provide a scalable and flexible
infrastructure for training and deploying machine learning models. These platforms allow
companies to easily access and use the latest hardware and software for machine learning,
without the need to invest in and maintain their own infrastructure. This can greatly reduce

6 Introduction

the cost and complexity of using machine learning, and allows companies to quickly and
easily scale their machine learning capabilities.

Moreover, cloud-based platforms provide access to large and diverse datasets, which are
essential for training effective machine learning models. This allows companies to leverage
the latest advances in machine learning and deep learning, without having to spend time and
resources collecting and curating their own data.

In summary, while on-premises infrastructure can provide some control and security,
it can also be costly and inflexible. In contrast, cloud-based platforms offer a more cost-
effective and scalable solution for companies looking to use machine learning and deep
learning to improve their operations.

1.8 Factors that Contribute to Deep Learning Model Fail-
ure in Production

There are several reasons why deep learning models can fail in production over time. One
important factor to consider is concept drift, which refers to the phenomenon where the
statistical properties of the data that a model was trained on change over time. This can occur
due to various external factors such as changes in the underlying data distribution, shifts in
the business environment, or changes in the way the data is collected or processed. When
concept drift occurs, the model’s performance may degrade because it is no longer able to
accurately predict outcomes based on the changed data distribution.

Another factor that can contribute to model failure is overfitting, which occurs when
a model is overly complex and has too many parameters relative to the amount of training
data. Overfitted models tend to perform well on the training data but may fail to generalize
to unseen data, leading to poor performance in production.

Another common reason for model failure is a lack of robustness, which refers to the
ability of a model to perform well in the presence of various types of noise or perturbations
in the data. Models that are not robust may perform poorly when exposed to such variations,
leading to poor performance in production.

There are also various external factors that can contribute to the failure of deep learning
models in production. For example, if the data used to train the model is of poor quality
or is biased in some way, the model’s performance may be compromised. Additionally,
if the model is not properly integrated into the production environment or is not properly
maintained over time, it may become less effective as changes occur in the system. Finally,
it is important to note that even well-designed and trained models may fail in production

1.9 Data Logging and Monitoring 7

due to various unforeseen circumstances. For example, a model may perform poorly if it is
exposed to data that it was not designed to handle, or if it is deployed in an environment with
unexpected constraints or requirements.

In conclusion, there are several factors that can contribute to the failure of deep learning
models in production over time, including concept drift, overfitting, lack of robustness, poor
quality or biased data, improper integration or maintenance, and unforeseen circumstances.

To mitigate these risks and ensure the long-term success of deep learning models in
production, it is important to carefully design and train the models, pay attention to the
quality and diversity of the training data, regularly monitor and maintain the models in
production, and be prepared to adapt to changes in the environment as needed.

1.9 Data Logging and Monitoring

Data logging and drift monitoring are important practices for ensuring the performance and
stability of machine learning models in production. Data logging refers to the process of
collecting and storing data about the model’s performance, input data, and the environment
in which it is running. This data can be used to monitor the model’s performance over
time, detect changes in the data or environment that may affect the model’s performance,
and identify issues or errors that may occur during model operation. Drift monitoring, on
the other hand, refers specifically to the process of detecting and tracking changes in the
statistical properties of the data that a model was trained on. This is important because such
changes, known as concept drift, can lead to a decline in the model’s performance over time.
By regularly monitoring for drift, organizations can identify when a model’s performance
may be compromised due to changes in the data distribution, and take appropriate corrective
action to address the issue. According to [Webb et al. (2016)] there are several different
types of concept drift that can occur, including:

1. Sudden drift: This type of drift refers to a sudden and significant shift in the data
distribution that occurs over a relatively short period of time. This type of drift can
be difficult to detect and can have a significant impact on model performance if not
addressed promptly.

2. Incremental drift: This type of drift refers to a gradual and ongoing shift in the data
distribution that occurs over a longer period of time. This type of drift can be easier to
detect than sudden drift, but can still have a significant impact on model performance
if left unmitigated.

8 Introduction

3. Covariate shift: This type of drift refers to a change in the distribution of the input
features of the data, rather than the output labels. This can occur when the data
collection process changes, or when the data is collected from different sources or
populations.

4. Prior probability shift: This type of drift refers to a change in the relative frequency
of different classes in the data. For example, if a model was trained on data where the
positive class occurred 80

5. Non-stationary drift: This type of drift refers to a dynamic or unpredictable change
in the data distribution, such as a change in the underlying business or environmental
factors that the model is being used to predict.

Effective drift monitoring requires a combination of data logging and appropriate drift
detection algorithms. There are several different approaches to detecting drift, including
statistical tests, distance-based methods, and change point detection algorithms. The choice
of approach will depend on the specific characteristics of the data and the needs of the
organization. In conclusion, data logging and drift monitoring are important practices for
ensuring the performance and stability of machine learning models in production. There are
several different types of concept drift that can occur, including sudden drift, incremental drift,
covariate shift, prior probability shift, and non-stationary drift. Effective drift monitoring
requires a combination of data logging and appropriate drift detection algorithms to identify
and address changes in the data distribution in a timely manner.

Chapter 2

Literature Review

2.1 Introduction

Machine learning (ML) has become a widely used approach for building complex models
that can be deployed in real-world applications. However, deploying these models in produc-
tion environments presents significant challenges, including the need for effective MLOps
(machine learning operations) practices to manage the end-to-end lifecycle of ML models.
In this literature review, we will explore the importance of data logging and monitoring in
MLOps, and present a comprehensive solution based on open-source tools such as MLFlow
and WhyLogs. We will also address the issue of model drift, which can arise when the
distribution of data used for training differs from the distribution of data used for inference.
Our solution will be designed to be production-ready and can be easily integrated into existing
enterprise environments, such as Microsoft Azure with Docker containers.

2.2 Data Logging and Monitoring in MLOps

Effective data logging and monitoring is crucial for MLOps, as it enables organizations to
track and optimize the performance of their ML models over time. Data logging refers to the
process of collecting and storing data related to the training, testing, and deployment of ML
models, while data monitoring involves analyzing and interpreting this data to identify any
issues or trends that may impact the performance of the model [Renggli et al. (2021)]. There
are several best practices and tools that organizations can use to implement effective data
logging and monitoring for their ML systems.

10 Literature Review

2.3 MLFlow and WhyLogs

MLFlow is an open-source platform for managing the end-to-end ML lifecycle, including
experimentation, reproducibility, deployment, and management [Zaharia et al. (2018)]. It
provides a centralized platform for tracking and organizing ML experiments, as well as tools
for deploying and managing ML models in production environments. WhyLogs is another
open-source platform for data monitoring and debugging of ML systems, designed to scale to
large and complex ML pipelines [Whylabs (2019)]. It provides tools for collecting, storing,
and analyzing data related to ML pipelines, as well as features for detecting and mitigating
issues that may impact the performance of the model.

2.4 Enterprise Machine Learning Workflows

There are several challenges and best practices that organizations should consider when
building and deploying ML models in the enterprise. These include issues related to scala-
bility, reproducibility, and governance. Scalability refers to the ability of the ML system to
handle increasing amounts of data and traffic, while reproducibility refers to the ability to
replicate the results of an ML experiment or deployment. Governance involves the policies
and procedures that organizations put in place to ensure the ethical and responsible use of
ML models.

2.5 Production-Ready Machine Learning

Building and deploying ML models in production environments requires a thorough under-
standing of the approaches and techniques that are available. A survey of approaches and tech-
niques for production-ready ML was conducted, which identified several key considerations,
including model selection, deployment strategies, and monitoring and maintenance [Ruf et al.
(2021)]. Model selection involves choosing the most appropriate ML model for a given task,
while deployment strategies involve deciding how and where to deploy the model, such as
on-premises or in the cloud. Monitoring and maintenance involves tracking the performance
of the model over time and taking corrective action if necessary.

2.6 Microsoft Azure Machine Learning

Microsoft Azure Machine Learning is a cloud-based platform that provides a comprehensive
set of tools and services for building, deploying, and managing ML models at scale. It

2.7 Docker for Machine Learning 11

offers a range of capabilities, including data preparation, model training and evaluation,
and deployment, as well as tools for monitoring and managing ML models in production
environments.

2.7 Docker for Machine Learning

Docker is a containerization platform that allows organizations to package and deploy appli-
cations and services in a standardized and portable way. It can be particularly useful for ML
development and deployment, as it allows organizations to easily set up and manage repro-
ducible ML environments. Best practices for using Docker for ML include considerations
for containerization, scalability, and reproducibility [Xu et al. (2017) & Mao et al. (2020)].

2.8 Drift Detection in Machine Learning Models

Model drift refers to the phenomenon of changes in the distribution of the data used to train
an ML model, which can impact the accuracy and reliability of the model over time. Drift
detection refers to the process of detecting these changes and taking corrective action to
mitigate their impact on the model. A survey of drift detection techniques was conducted,
which identified several approaches and techniques that organizations can use to detect and
mitigate model drift.

2.9 Minio

Minio is an open-source object storage server designed for ML workflows (Minio Inc.,).
It provides features such as data durability, scalability, and security, which are important
considerations for ML systems that handle large amounts of data [Minio (2016)]. MySQL
Databases in Machine Learning Workflows: MySQL is a widely used database management
system that can be used in ML workflows (MariaDB Foundation, n.d.). It offers features
such as performance, scalability, and data management, which can be useful for ML systems
that require fast access to large amounts of data. However, there are also challenges that
organizations should consider when using MySQL in ML workflows, including issues related
to data management, performance, and scalability.

12 Literature Review

2.10 Open Source Machine Learning

Open source tools and frameworks offer several benefits for ML development and deployment,
including access to a wide range of resources, flexibility, and cost-effectiveness [Nguyen
et al. (2019)]. However, there are also challenges that organizations should consider when
adopting open source ML solutions, including issues related to adoption, integration, and
support.

2.11 MLOps in the Cloud

Implementing MLOps in the cloud can provide organizations with several benefits, including
scalability, security, and cost-effectiveness. However, there are also challenges that organiza-
tions should consider when implementing MLOps in the cloud, including issues related to
resource management, security, and compliance.

2.12 Conclusion

In this literature review, we have explored the importance of data logging and monitoring
in MLOps, and presented a comprehensive solution based on open-source tools such as
MLFlow and WhyLogs. We have also addressed the issue of model drift and discussed
the considerations and challenges involved in building and deploying ML models in the
enterprise and in production environments. Overall, this review demonstrates the importance
of effective data logging and monitoring in MLOps, and presents a practical solution that can
be used in real-world production environments.

Chapter 3

State of the Art

3.1 Self-Attention in Transformers: A Deep Learning Rev-
olution

Transformers are a type of deep learning architecture that uses self-attention mechanisms
to model the interactions between different input tokens. They were introduced in the
paper "Attention is All You Need" Vaswani et al. (2017) and have become widely used in
natural language processing tasks, such as machine translation and text classification. In
a transformer model, the input tokens are first passed through an embedding layer, where
each token is represented as a dense vector. These embedded tokens are then fed into
the transformer architecture, which consists of multiple layers of self-attention and feed-
forward networks. The self-attention layers allow the model to attend to different parts of the
input sequence, based on the relationships between the tokens. This enables the model to
capture the dependencies between the tokens, and encode them into the contextualized token
representations. For example, in a machine translation task, a transformer model may use
self-attention to identify the subject and the verb in a sentence, and encode their relationship
into the contextualized token representations. This information can then be used by the
feed-forward layers to generate the translated sentence. Transformers are a powerful deep
learning architecture that uses self-attention mechanisms to model the interactions between
different input tokens, and enable the model to capture the dependencies between them.

14 State of the Art

3.2 Understanding BERT: A State-of-the-Art Natural Lan-
guage Processing Model

BERT (Bidirectional Encoder Representations from Transformers) is a state-of-the-art natural
language processing model developed by Google Research in 2018. It is designed to pre-train
deep bidirectional representations from unlabelled text by jointly conditioning on both left
and right context in all layers. BERT has been widely used for various natural language
processing tasks such as text classification, question answering, and language translation,
and has achieved state-of-the-art performance on many benchmarks.

The BERT algorithm is trained on large amounts of unlabelled text data and uses a self-
supervised learning approach to learn the underlying structure of the language. It achieves
this by using a series of masked language modelling and next sentence prediction tasks,
where a portion of the input text is masked and the model must predict the missing words
based on the surrounding context. Mathematically, the BERT algorithm can be represented
by the following formula:

BERT(x) = Transformer(x,W) (3.1)

Where x is the input text, W is the set of model parameters (e.g. weights and biases),
and Transformer is the transformer-based architecture used by BERT. The transformer
architecture consists of a series of encoder and decoder layers, each of which contains
multiple attention heads. The encoder layers are used to encode the input text and the decoder
layers are used to predict the masked words or the next sentence in the input text. The
attention mechanism in BERT is a key component of the algorithm, allowing it to consider
the context of a given input word by attending to different parts of the input text. This is
represented mathematically by the following formula:

Attention(Q,K,V) = softmax(QKT/
√

dk)V (3.2)

Where Q, K, and V are the query, key, and value matrices, respectively, and dk is the
dimension of the keys. BERT algorithm uses a transformer-based architecture and attention
mechanisms to learn the underlying structure of the language in a self-supervised manner,
allowing it to perform well on a variety of natural language processing tasks.

3.3 BERT Architecture 15

3.3 BERT Architecture

Devlin et al. (2018)

Fig. 3.1 Understanding BERT: A State-of-the-Art Natural Language Processing Model

1. The model uses a transformer architecture, which is composed of multiple layers of
self-attention and feed-forward neural networks. The input to the model is a sequence
of tokens, such as words or sub-words in a sentence. These tokens are passed through
an embedding layer, where each token is represented as a dense vector.

2. The embedded tokens are then fed into the transformer architecture, which consists
of multiple layers of self-attention and feed-forward networks. The self-attention
layers allow the model to attend to different parts of the input sequence, while the
feed-forward layers enable the model to capture more complex relationships between
the input tokens.

3. Within each transformer layer, the model calculates self-attention weights for each
token, which determine how much attention the model should pay to that token. These
weights are then used to calculate a weighted sum of the input tokens, which is used as
the input to the feed-forward network.

4. The output of the transformer layers is a sequence of contextualized token representa-
tions, which capture the meaning of each token within the context of the entire input
sequence.

16 State of the Art

5. Finally, the contextualized token representations are passed through a classification
layer, which uses them to make predictions about the input sequence, such as identify-
ing the named entities or the sentiment of a sentence.

Overall, the BERT architecture allows the model to capture the relationships between different
tokens in the input sequence, which enables it to perform natural language processing tasks
with high accuracy.

Devlin et al. (2018)

Fig. 3.2 BERT utilizing bidirectional context in NLP

3.4 Comparing BERT Uncased and Cased Models

BERT (Bidirectional Encoder Representations from Transformers) is a state-of-the-art natural
language processing model developed by Google Research. BERT has two versions: BERT
uncased and BERT cased. BERT uncased refers to the version of BERT that has been
pre-trained on lowercase text only. This means that the model has only been exposed to
text where all the words are in lowercase, and it has not been trained on text where some
words are in uppercase. As a result, BERT uncased may perform worse on tasks that require
the model to differentiate between uppercase and lowercase words, such as named entity
recognition or part-of-speech tagging. BERT cased, on the other hand, refers to the version
of BERT that has been pre-trained on both lowercase and uppercase text. This means that
the model has been exposed to text where some words are in uppercase and some are in
lowercase, and it has been trained to differentiate between these cases. As a result, BERT

3.5 Fine-tuning BERT for News Classification 17

cased may perform better on tasks that require this ability, such as named entity recognition
or part-of-speech tagging. Overall, the choice between BERT uncased and BERT cased
depends on the specific natural language processing task at hand. If the task does not require
the model to differentiate between uppercase and lowercase words, then BERT uncased may
be a good choice. However, if the task does require this ability, then BERT cased may be a
better choice.

3.5 Fine-tuning BERT for News Classification

News classification is the task of assigning a news article to one or more categories or
topics based on its content. For example, a news article about a new scientific discovery
could be classified as science, technology, or health news. BERT can be used for news
classification by fine-tuning the pre-trained model on a labelled dataset of news articles
and their corresponding categories [Jing and Bailong (2021), Shishah (2021) & Kiela et al.
(2020)]. To fine-tune BERT for news classification, the first step is to prepare the dataset. This
involves extracting the text of each news article and its corresponding categories or topics.
The dataset should also be divided into training and testing sets, with the training set used to
fine-tune the pre-trained BERT model and the test set used to evaluate the performance of
the fine-tuned model. Next, the fine-tuned BERT model can be trained on the training set by
adjusting the model’s parameters to better predict the categories of the news articles. This is
done by feeding the articles and their corresponding categories into the model and using an
optimization algorithm, such as stochastic gradient descent, to adjust the model’s parameters
to minimize the classification error on the training set. Once the fine-tuned BERT model is
trained, it can be used to predict the categories of new, unseen news articles. This is done
by feeding the text of the news article into the model and using the trained model to predict
the most likely categories for the article. The performance of the model can be evaluated on
the test set by comparing the predicted categories with the true categories and calculating a
performance metric, such as accuracy or F1 score. Overall, BERT can be a powerful tool for
news classification tasks, allowing for accurate and efficient classification of news articles
into their corresponding categories.

3.6 Managing Machine Learning Lifecycle with MLFlow

MLFlow is an open-source platform for managing the end-to-end machine learning lifecycle.
It is designed to help data scientists and machine learning engineers track and manage

18 State of the Art

their machine learning experiments, model training and deployment [Zaharia et al. (2018)].
MLFlow consists of three main components:

1. MLFlow Tracking: This component allows data scientists to track and log their
machine learning experiments, including the hyperparameters, metrics and artifacts
generated during training. This enables them to compare and reproduce different
experiments, and monitor the performance of their models over time.

2. MLFlow Projects: This component enables data scientists to package and share their
machine learning code and dependencies as reproducible projects. This makes it easier
to collaborate and reproduce experiments across different teams and environments.

3. MLFlow Models: This component allows data scientists to package their trained
machine learning models as artifacts, which can be deployed to a variety of platforms,
such as cloud services or on-premises servers. It also provides an API for making
predictions using the deployed models.

3.7 Tracking and Managing ML Experiments with MLFlow

In MLFlow, a run is a single execution of a machine learning experiment, which can be
tracked and logged using the MLFlow Tracking component. A run typically consists of
multiple stages, such as data pre-processing, model training and evaluation, and can be
initiated either manually or through an MLFlow Project.

At each stage of a run, data scientists can log various types of data, such as metrics, hy-
perparameters, and artifacts, using the MLFlow API. This data is then stored in a centralized
tracking server, which enables data scientists to compare and reproduce different runs, and
monitor the performance of their models over time.

For example, a data scientist may log the hyperparameters used for training a machine
learning model, such as the learning rate and the number of hidden layers, along with the
evaluation metrics, such as the accuracy and the f1-score. This data can then be used
to compare the performance of different model configurations and select the best one for
deployment.

The ability to log data at each stage of a run in MLFlow helps data scientists to track
and manage their machine learning experiments, and enables them to make more informed
decisions about their model training and deployment.

3.8 Data Management with PyTorch’s Lightning Data Module 19

3.8 Data Management with PyTorch’s Lightning Data Mod-
ule

The Lightning data module in PyTorch is a high-level API that simplifies the process of
loading, transforming, and training machine learning models with PyTorch [LightningAI
et al. (2018)]. It provides a set of classes and functions that enable data scientists to easily
define and manage their machine learning data pipelines, and focus on building and training
their models. The Lightning data module provides several key features, such as:

1. Data loading and pre-processing: The Lightning data module provides classes and
functions for loading and pre-processing data from various sources, such as CSV files,
image directories, or PyTorch datasets. It also enables data scientists to define custom
data transformations, such as image augmentation or text tokenization.

2. Data loaders and samplers: The Lightning data module provides classes for creating
PyTorch data loaders, which are used to feed data into the model during training. It
also provides samplers, which allow data scientists to control how data is sampled
from the dataset, such as using a random or balanced sampling strategy.

3. Batching and padding: The Lightning data module provides classes and functions
for batching and padding data, which are necessary for training deep learning models
with variable-length inputs. It also enables data scientists to define custom padding
strategies, such as using the maximum or average length of a batch.

Lightning data module in PyTorch simplifies the process of managing and training machine
learning models with PyTorch, and enables data scientists to focus on the core aspects of
their model development.

Chapter 4

Problem Statement

4.1 Aim & Objective

It is not uncommon for companies to deploy deep learning models without adequately
considering the maintenance and optimization of these models over time. This can result in
model degradation, which can ultimately lead to decreased accuracy and effectiveness of the
model. There are several factors that can contribute to model degradation, such as changes in
the data distribution, concept drift, or changes in the business context.

The objective of this project is to develop a production-ready solution for the optimization
and performance of deep learning models in the enterprise environment. The solution aims
to address the problem of model degradation over time due to various internal and external
factors such as model drift, data drift, concept drift, or changes in business scope.

To achieve this objective, the project involves implementing a data logging and monitoring
system using open source tools such as MLFlow and WhyLogs. The data logging system
will ensure proper logging of data parameters and metrics, while the monitoring system will
analyze the logged data for anomalies or drifts that may occur over time.

In addition to data logging and monitoring, the project also involves deploying the
solution in a Docker container hosted on a Microsoft Azure virtual machine. This will
enable the solution to be easily integrated into the production environment, making it more
accessible to enterprise users.

Overall, the goal of this project is to improve the optimization and performance of deep
learning models in the enterprise environment, by enabling data logging, monitoring, and
retraining of the models as needed. By utilizing open source tools and a Docker-based
deployment on Azure, the solution is designed to be both scalable and flexible, making it
suitable for a wide range of machine learning workflows in the enterprise environment.

22 Problem Statement

4.2 Scope & Limitations

4.2.1 Scope of the Research

Clarifying the specific benefits and outcomes that the project aims to achieve for a well
defined scope and purpose of the project. In the context of this project, some potential
benefits or outcomes might include:

• Improved model accuracy: By implementing data logging and monitoring, and
regularly retraining the model as needed, the solution aims to improve the accuracy of
the deep learning models in the enterprise environment. This could potentially result in
better decision-making and data-driven recommendations, leading to increased revenue
for the company.

• Reduced time spent on model maintenance: By automating the process of data
logging, monitoring, and retraining, the solution aims to reduce the time and resources
spent on manual model maintenance. This could free up data scientists to focus on
other tasks, such as developing new models or exploring new data sources.

• Enhanced scalability and flexibility: By deploying the solution in a Docker container
on Azure, the solution aims to be scalable and flexible, able to adapt to changing
business needs and requirements. This could allow the solution to be used in a wide
range of machine learning workflows, improving the efficiency and effectiveness of
deep learning models in the enterprise environment.

4.2.2 Limitations

1. The solution is limited in its applicability to certain machine learning and deep learning
models that have been tested within the constraints of the project. It may not be
universally applicable to all types of machine learning or deep learning models.

2. The solution is dependent on the accuracy and reliability of the data logged and
monitored by MLFlow and WhyLogs. If the data is not properly logged or is unreliable,
the solution may not be effective.

3. The solution is only applicable in a monitored academic/enterprise environment, and
may not be suitable for certain types of organizations or environments.

4. The solution is dependent on the scalability and flexibility of the Docker container
and Azure virtual machine. If these components are not able to handle the workload

4.2 Scope & Limitations 23

or adapt to changing needs, the solution may be limited in its ability to optimize and
improve deep learning models.

5. The solution may not be able to address all potential causes of model degradation, such
as changes in business strategy or unforeseen external events.

6. The solution may require significant resources and expertise to implement and maintain,
which may not be feasible for all companies.

7. The solution may be subject to the limitations and constraints of the open source tools
used, such as MLFlow and WhyLogs.

8. The solution may be affected by external factors such as network connectivity or
hardware failures, which could disrupt the data logging and monitoring process.

9. The solution may not be able to fully automate the process of model maintenance, and
may require some manual intervention or oversight from data scientists.

10. The solution may not be able to guarantee improved model accuracy or performance,
as this will depend on various factors such as the quality and diversity of the data used
to train the model.

11. The solution is intended to provide important insights based on data logging and moni-
toring metrics, but it should not be taken as a replacement for model drift algorithms
or the role of a data scientist in model development. It is meant to be used in addition
to these tools and processes, rather than as a replacement.

12. The solution may be limited to the specific versions of tools and libraries used in the
project. Any updates or changes to these tools and libraries may affect the compatibility
and functionality of the solution.

Chapter 5

Implementation

5.1 Architecture Diagram

The architecture described in the block diagram outlines the process of solving a business
usecase using machine learning. It involves defining success criteria, collecting and preparing
data, training a model using BERT, and monitoring progress through data logging and a
dashboard.

Fig. 5.1 Block diagram of the ML Workflow for solving a business problem through data
collection, preparation, and training of a machine learning model using BERT and monitoring
with a dashboard.

26 Implementation

5.2 Pipeline Explanation

Fig. 5.2 Proposed pipeline architecture with deployment in Docker Container on Azure VM

The code is an example of a natural language processing (NLP) pipeline that uses PyTorch
Lightning to train a BERT model on two different datasets: 20 Newsgroups and AG News.
The pipeline has the following steps:

1. Import the required libraries, including PyTorch Lightning, BERT, and PyTorch.

2. Define a function get_20newsgroups() that fetches the 20 Newsgroups dataset, selects
a subset of categories, and returns a Pandas DataFrame with the text data and labels.

3. Define a function get_ag_news() that reads the AG News dataset from a file and returns
a Pandas DataFrame with the text data and labels.

4. Define a class NewsDataset that extends the IterDataPipe class from the torchdata
library. This class defines an iterator that tokenizes the input text data, pads it to a
specified maximum length, and converts it to PyTorch tensors.

5. Define a PyTorch Lightning Module class TextClassification that represents the BERT
model. This class contains a forward() method that applies the BERT model to the
input data, followed by a linear layer and a softmax function to predict the class
probabilities.

5.3 Logging & Monitoring using MLFlow and WhyLogs 27

6. Define a function train() that sets up the PyTorch Lightning trainer, specifies the
training and validation datasets, and trains the BERT model.

7. Define a function main() that parses the command-line arguments, sets up the BERT
tokenizer, creates the training and validation datasets, and trains the BERT model.

8. To summarize, the code defines a pipeline for training a BERT model on text classifi-
cation tasks using PyTorch Lightning.

5.3 Logging & Monitoring using MLFlow and WhyLogs

1. Install the MLFlow and WhyLogs packages using pip:

• pip install MLFlow

• pip install WhyLogs

2. Import the MLFlow and WhyLogs modules in the code:

• import mlflow.pytorch

• import whylogs as why

3. Initialize a new mlflow experiment:

• mlflow.create_experiment("<experiment_name>")

4. Start a new mlflow run:

• mlflow.start_run()

5. Log the hyperparameters used for training the model:

• mlflow.log_param("<parameter_name>", "<parameter_value>")

6. Use whylogs to capture the training data and log it in mlflow:

• Initialize a new whylogs context: whyctx = why.Context()

• Create a new whylogs dataset: ds = why.Dataset(data=<training_data>)

• Add the dataset to the whylogs context: whyctx.add_dataset(ds)

• Generate a summary of the training data: summary = whyctx.summary()

• Log the summary in mlflow: mlflow.log_metrics(summary.metrics)

28 Implementation

7. Use mlflow to log the model artifacts (e.g. trained model weights, training logs, etc.):

• mlflow.pytorch.log_model(model, "<model_name>")

8. End the mlflow run:

• mlflow.end_run()

This methodology allows for efficient tracking and logging of model information using
mlflow, which can be accessed and analyzed later for model evaluation and improvement.

5.4 Dataset

The code uses two datasets for training the model - 20newsgroups and ag_news.

5.4.1 20NewsGroups

The 20newsgroups dataset is a collection of approximately 20,000 newsgroup documents,
partitioned (nearly) evenly across 20 different newsgroups. The dataset was originally
collected and distributed by [Ken Lang (1995)], a computer scientist at ATT Bell Laboratories,
in the early 1990s as a way to help researchers study machine learning algorithms. The
newsgroups included in the dataset cover a wide range of topics, from computer science and
politics to religion and sports. Each document in the dataset is labelled with the newsgroup
it belongs to, making it a useful dataset for training and testing classification algorithms.
The 20newsgroups dataset has been widely used in the field of natural language processing,
particularly in the development of text classification algorithms. It has also been used in
other areas of machine learning research, such as topic modelling and information retrieval.
In addition to the text of the newsgroup documents, the 20newsgroups dataset also includes
metadata such as the date the document was posted and the author’s name. This metadata can
be useful for further analysis, such as studying the evolution of newsgroup discussions over
time. One of the unique characteristics of the 20newsgroups dataset is that it contains a mix
of both long and short documents, as well as a mix of both well-written and poorly-written
texts. This makes it a challenging dataset for natural language processing algorithms, as
it requires the ability to handle a wide range of text types and styles. The 20newsgroups
dataset has been used in numerous academic research papers and is considered a benchmark
dataset in the field of natural language processing. It continues to be a valuable resource for
researchers studying text classification and other related topics.

5.4 Dataset 29

5.4.2 AG News

The AG News dataset is a collection of over one million news articles in the domain of sports,
business, science, and entertainment [Zhang et al. (2015)]. It is commonly used for text
classification tasks, such as identifying the topic or sentiment of a given article. The dataset
is split into four distinct classes, each corresponding to a specific topic: sports, business,
science, and entertainment. Within each class, the articles are further divided into training
and test sets, with the training set containing 750,000 articles and the test set containing
20,000 articles. Each article in the dataset is represented by a title, a description, and a set of
labels indicating the article’s topic and sentiment. The labels are binary, with 1 indicating a
positive sentiment and 0 indicating a negative sentiment. The dataset is widely used in the
field of natural language processing, particularly in the area of text classification. Researchers
have used the AG News dataset to train and evaluate machine learning models for tasks such
as sentiment analysis, topic classification, and language modelling. The AG News dataset is
well-suited for these tasks due to its large size and well-defined structure. The inclusion of
both a title and a description for each article allows for a more comprehensive representation
of the content, and the use of binary labels for sentiment allows for straightforward evaluation
of model performance. AG News dataset is a valuable resource for researchers studying text
classification and natural language processing. Its large size and well-defined structure make
it an ideal dataset for training and evaluating machine learning models in these domains.

• 20newsgroups is a dataset of newsgroup posts on a variety of topics, including atheism
and religion. It is provided by the sklearn library, and can be downloaded using the
fetch_20newsgroups function. The dataset contains text data and corresponding labels
for each newsgroup post.

• ag_news is a dataset of news articles from the AG’s Corpus of news articles on the web.
It is provided by the torchtext library, and can be downloaded using the AG_NEWS
function. The dataset contains text data and corresponding labels for each news article.
The labels are in the range of 1-4, representing the four categories in the dataset -
World, Sports, Business, and Sci/Tech.

Both datasets are used to train the model for text classification, with the 20newsgroups
dataset being used by default. The user can specify the dataset type in the dataset parameter
of the NewsDataset class.

30 Implementation

5.5 Azure Docker Deployment

5.5.1 Azure Virtual Machine Configuration

Here are the steps to create a virtual machine (VM) in Azure:

1. Go to the Azure portal (https://portal.azure.com/) and sign in with your Azure account.

2. Click the "Create a resource" button in the top left corner.

Fig. 5.3 Create a resource on Azure VM

3. In the "Search the Marketplace" field, type "Ubuntu Server" and select the first result.

Fig. 5.4 Create a Ubuntu Server

4. On the "Create a virtual machine" page, select the options for the VM you want to
create, such as the region, size, and resource group.

https://portal.azure.com/

5.5 Azure Docker Deployment 31

Fig. 5.5 Virtual Machine Configuration Details

5. On the "Settings" page, configure the options for the VM, such as the administrator
username and password, which will be used to login later in the terminal session.

6. On the "Summary" page, review the options you have selected and click the "Create"
button to create the VM.

7. Once the VM has been created, click the "Go to resource" button to open the VM’s
page.

8. On the VM’s page, click the "Add inbound port rule" button at the top of the page.

9. In the "Add inbound port rule" blade that appears, enter the name and description for
the rule.

10. Select the protocol (TCP or UDP) and the port range for the rule (TCP in our use case).
You can specify a single port or a range of ports.

11. Specify the destination port range specifically for S3_Bucket_Minio, MLFlow_UI,
AllowAnyCustom9090Inbound as per the screenshot below.

32 Implementation

Fig. 5.6 Network Configuration of VM

Fig. 5.7 Allowing traffic to destination port

5.6 Docker Deployment 33

12. Specify the source for the rule. You can choose to allow traffic from any source, or
you can specify a specific IP address or range of addresses.

13. Click the "Add" button to create the rule.

14. The rule will be added to the list of inbound port rules for the virtual machine. You
can view, edit, or delete the rule by clicking on it in the list.

15. Open a terminal window on your local machine. At the terminal prompt, enter the
following command: ssh <username>@<vm-ip-address>, replacing <username>
with the username of the account you want to use to log in to the VM, and <vm-ip-
address> with the IP address of the VM.

16. Press "Enter" to initiate the SSH connection.

17. Enter the password for the user account you specified in step 1. Type the password and
press "Enter".

18. If the login is successful, you will see a command prompt for the VM.

5.6 Docker Deployment

Next we install Docker Engine and Docker Compose on our Ubuntu VM, follow these steps:

1. Update the package manager index:

Fig. 5.8 Update Package Manager’s package Index

2. Install packages to allow apt to use a repository over HTTPS:

3. Add the official Docker GPG key:

4. Add the Docker stable repository to APT sources:

5. Install Docker Engine:

6. Verify that Docker Engine is installed and running:

34 Implementation

Fig. 5.9 Docker Installation - 1

Fig. 5.10 Docker Installation - 2

Fig. 5.11 Docker Installation - 3

Fig. 5.12 Docker Installation - 4

Fig. 5.13 Test Docker Installation: Docker Installation - 5

Fig. 5.14 Clone git repo and fetch codebase

5.6 Docker Deployment 35

7. Test the installation: docker-compose –version

8. Next use git clone command followed by the repository URL to load required config
and docker compose files.

The .env file contains environment variables that are used in the bucket.py script and
docker-compose.yml file. These environment variables include:

• MINIO_ROOT_USER: the root user for the Minio S3 service

• MINIO_ROOT_PASSWORD: the password for the root user of the Minio S3 service

• MLFLOW_BUCKET_NAME: the name of the bucket to be used by the MLFlow
server

• MYSQL_DATABASE: the name of the MySQL database used by MLFlow

• MYSQL_USER: the username for the MySQL database used by MLFlow

• MYSQL_PASSWORD: the password for the MySQL user

• MYSQL_ROOT_PASSWORD: the root password for the MySQL database

• MLFLOW_S3_ENDPOINT_URL: the endpoint URL for the Minio S3 service

• MLFLOW_TRACKING_URI: the URI for the MLFlow server

The bucket.py script reads these environment variables and checks that they are not empty.
If any of the environment variables are empty, it will print an error message and exit with a
status code of 1.
The docker-compose.yml file specifies how to build and run the Docker containers for the
Minio S3 service, MySQL database, and MLFlow server. It sets the environment variables for
these containers using the environment key, and specifies the values for these variables using
$VARIABLE_NAME syntax, which tells Docker to substitute the value of the specified
environment variable at runtime.
The environment variables specified in the .env file can be loaded into the current shell
session by running the command source .env. This will make the environment variables
available to any script or command run within the current shell session.

Next run, docker-compose up -d command on the terminal:
The docker-compose up command is used to start and run Docker containers based on

the docker-compose.yml configuration file. The -d flag stands for "detached mode", which

36 Implementation

Fig. 5.15 Start and run docker container

means that the containers will be started in the background and you will be returned to the
command prompt.

The sudo docker ps command is used to list the running Docker containers along with
their container IDs, names, image names, and other information on the VM.

The execute_bucket.sh script is a shell script that installs the Minio Python library and
then runs the bucket.py script. The script starts by using the source command to load the
environment variables from the .env file into the current shell session. The set -o allexport
command enables the export of all variables to the environment of any subsequently executed
command, and the set +o allexport command disables this behaviour. Next, the script installs
the Minio library using pip3, and then runs the bucket.py script using python3. To run the
execute_bucket.sh script, you can use the bash command followed by the name of the script,
like this:

Fig. 5.16 Run the deployment pipeline

This will execute the commands in the script and create a bucket with the name specified
in the MLFLOW_BUCKET_NAME environment variable, using the Minio S3 service
running at the endpoint specified in the MLFLOW_S3_ENDPOINT_URL environment
variable.

Copy the public IP address of the VM and run it with port 5000 and 9090 respectively.
MLFlow UI Server Deployment: http://51.124.123.52:5000
Minio S3 service: http://51.124.123.52:9090

http://51.124.123.52:5000
http://51.124.123.52:9090

5.7 Data Monitoring using Whylogs 37

5.7 Data Monitoring using Whylogs

Whylabs is a data profiling and monitoring platform that can be used to track the quality and
behaviour of data over time. It integrates with the open-source machine learning platform
MLFlow, allowing users to monitor data profiling from already logged data in MLFlow. One
of the benefits of using WhyLabs is that it makes it easier to track and monitor data quality
and behaviour. Data profiling is the process of examining and summarizing the characteristics
of a dataset, and it can help identify issues such as missing values, inconsistencies, or outliers
in the data. By tracking data profiling over time, users can identify changes in the data that
may affect the performance of their machine learning models. WhyLabs offers a feature
called "drift monitors" that can be used to track changes in data over time. Drift monitors
allow users to set up thresholds for specific data attributes, and the platform will alert users if
the data exceeds these thresholds. This can be useful for detecting changes in the data that
may affect the performance of a machine learning model, such as a sudden increase in the
number of missing values or a change in the distribution of a particular attribute.
In addition to drift monitors, WhyLabs also offers "anomaly windows" which allow users
to specify a time period during which data is expected to be consistent. If the data exhibits
unexpected behaviour outside of this window, the platform will alert the user. This can be
useful for identifying unusual patterns or changes in the data that may not be immediately
apparent.
One of the strengths of WhyLabs is its visualization capabilities. The platform offers a range
of interactive charts and graphs that can be used to visualize data profiling results. These
visualizations can be helpful for identifying patterns and trends in the data and for comparing
data from different sources or time periods.
Whylabs is an open-source platform, which means that its source code is freely available
for users to access and modify. This can be beneficial for users who want to customize the
platform to meet their specific needs, or for those who want to contribute to the development
of the platform.
In conclusion, WhyLabs is a powerful data profiling and monitoring platform that can be used
to track the quality and behaviour of data over time. It offers features such as drift monitors
and anomaly windows that can be used to detect changes in the data, and its visualization
capabilities make it easy to identify patterns and trends in the data. As an open-source
platform, WhyLabs is also highly customizable, making it a flexible and powerful tool for
data professionals.
To set up a WhyLabs account and create a new model, follow these steps:

38 Implementation

1. Go to the WhyLabs website https://hub.whylabsapp.com/ and click on the "Sign Up"
button in the top right corner. Fill in the required information to create a new account.

2. Once you have created your account and logged in, you will be taken to the WhyLabs
dashboard. From here, you can create a new model by clicking on the "Create New"
button in the top right corner.

To create a new project in the WhyLabs dashboard and generate an access token for it, follow
these steps:

1. Go to the WhyLabs dashboard and click on the "Projects" tab in the top menu.

2. On the Projects page, click the "Create New" button in the top right corner.

3. Fill in the required information to create a new project. Give your project a name (e.g.,
"mlflow-whylogs") and select an organization (if applicable).

4. Once your project is created, go to the "Integrations" tab in the top menu.

5. On the Integrations page, click the "Setup" button next to the "MLFlow" integration.

6. In the Setup dialog, select your newly created project from the dropdown menu.

7. Click the "Generate Access Token" button to generate a new access token for the
selected project.

8. Copy the generated access token and use it in your integration with MLFlow

5.8 Whylabs Data Profiling

1. Installs the required Python packages using pip. The packages being installed are:
whylogs[mlflow], scikit-learn, matplotlib, pandas, mlflow-skinny, and whylabs-
client.

2. Imports the os module and sets some environment variables. The environment variables
are:

• WHYLABS_DEFAULT_ORG_ID: a case-sensitive organization ID for the
WhyLabs platform.

• WHYLABS_API_KEY: an API key for accessing the WhyLabs platform.

https://hub.whylabsapp.com/

5.8 Whylabs Data Profiling 39

• WHYLABS_DEFAULT_DATASET_ID: a dataset ID for a selected model
project in the WhyLabs platform.

3. Imports the pandas module and the fetch_20newsgroups function from the sklearn.datasets
module.

4. Defines a function get_20newsgroups that retrieves a subset of the 20 Newsgroups
dataset from the sklearn.datasets module and returns it as a Pandas dataframe. The
subset consists of four categories: "alt.atheism", "talk.religion.misc", "comp.graphics",
and "sci.space".

5. Calls the get_20newsgroups function to retrieve the subset of the 20 Newsgroups
dataset and assigns the result to a variable called df.

6. Replaces the numeric labels in the df dataframe with the corresponding category
names.

7. Assigns the df dataframe to a variable called dataset.

8. Shuffles the rows of the dataset dataframe and divides it into seven equal-sized batches.

9. Generate a batch of datasets with different levels of drift (i.e., changes to the data)
from the original 20 Newsgroups dataset. We set a list of percentages that will be used
to delete or change data points in the original dataset.

10. Then we create a loop where it creates copies of the original dataset, converts them to
NumPy arrays, and modifies them according to the percentage of data points to delete
or change. Specifically, it randomly selects a certain percentage of data points and
either deletes them or changes their labels randomly. The modified datasets are then
converted back to Pandas dataframes.

11. Adds a "date" column to each batch, with the date being set to the current date plus a
number of days (0 to 6) depending on the batch.

12. Concatenates all the batches into a single dataframe called dataset.

13. Imports the whylogs module and uses its log function to perform data profiling on
the dataset dataframe. The result of the data profiling is stored in a variable called
profile_result.

14. Uses the view function of the profile_result to create a visual summary of the data
profiling results.

40 Implementation

15. Writes the data profiling results to the WhyLabs platform using the writer function
and the whylabs writer.

16. Converts the data profiling results to a Pandas dataframe using the to_pandas function
and displays the results.

5.9 Minio: Distributed Object Storage

Fig. 5.17 Minio Storage

1. Scalability: Minio is a distributed object storage system that is designed to scale
horizontally, which means you can add more servers to the cluster as your storage
needs grow. This can be useful for large-scale machine learning projects where you
need to store and access large amounts of data.

2. Compatibility: MLFlow natively supports Minio as a storage backend, so you can
easily use it to store your MLFlow artifacts, such as models, parameters, and metrics.

3. Security: Minio provides secure, encrypted data storage and transmission using
SSL/TLS certificates, which can be important for sensitive machine learning projects.

4. Performance: Minio is optimized for high performance, with support for parallelism
and multi-threading. This can help improve the speed and efficiency of your machine
learning pipelines.

5.9 Minio: Distributed Object Storage 41

5. Cost-effectiveness: Minio is open source and can be deployed on-premises or in the
cloud, which can help you save on storage costs compared to proprietary solutions.

The above deployment is routed on Azure VM public IP address and serves as a block
storage backend to the data logging solution. Then, when we run the machine learning
pipeline and log the model artifacts and other relevant information using the MLFlow API,
the information will be stored directly on Minio. Having a storage layer allows different
layers of the stack to be developed, tested, and deployed independently, which can improve
the maintainability and scalability of the system. It also allows different storage solutions to
be used at the storage layer, depending on the needs of the application. For example, you
might use Minio for storing large amounts of unstructured data, such as images or video, or
for storing data for machine learning pipelines.

Chapter 6

Result & Analysis

6.1 Evaluation

6.1.1 Model Comparison

Different model records can help to fine-tune a model in several ways:

1. Model records can help you compare the performance of different models. By com-
paring the metrics and parameters recorded for each model, you can identify which
models perform better on your data and choose the one that is most suitable for your
task.

2. Model records can help you identify patterns and trends in the data. By looking at
the various metrics recorded for each model, you can identify which parameters or
hyperparameters are most important for your task and fine-tune your model accordingly.

3. Model records can help you identify areas for improvement. By comparing the
performance of different models, you can identify areas where your models are under-
performing and work on improving them.

4. Model records can help you choose the best model for your task. By comparing the
performance of different models, you can choose the one that performs the best on
your data and deploy it for your task.

Based on the comparison with the new run 10, it seems that the model’s performance
is generally better when the number of epochs is lower, the learning rate is lower, and the
number of samples is higher. For example, in run 10, the model achieved an average test
accuracy of 0.758 with 20 epochs, a learning rate of 0.001, and a large number of samples

44 Result & Analysis

Fig. 6.1 Models runs

Run Name epochs learning_rate max_epochs num_samples avg_test_acc train_loss val_loss Duration Status batch_size num_workers optimizer_name
run 10 20 0.001 20 20000 0.758277535 0.333182037 0.542199731 3.8h FINISHED 32 4 AdamW
run 9 10 0.001 10 20000 0.739172876 0.658686936 0.564948916 2.2h FINISHED 64 4 AdamW
run 8 20 0.001 20 2000 0.680397749 0.963944077 0.937088728 54.8min FINISHED 32 4 AdamW
run 7 10 0.001 10 2000 0.644176126 0.971881628 0.948357522 29.8min FINISHED 32 4 AdamW
run 6 5 0.001 5 2000 0.584517062 1.063081145 1.111751795 13.4min FINISHED 64 4 AdamW
run 5 5 0.001 5 2000 0.563742876 1.112571239 1.11247015 13.1min FINISHED 64 4 AdamW
run 4 10 0.01 10 2000 0.551846564 0.833009481 1.09726429 24.6min FAILED 32 4 AdamW
run 3 1 0.001 1 20000 0.550243437 0.885872245 0.997453392 20.9min FINISHED 64 4 AdamW
run 2 5 0.001 5 2000 0.533333361 1.018695474 1.11707592 15.9min FAILED 64 6 AdamW
run 1 10 0.01 10 2000 0.366714001 1.286780357 Infinity 6.8min FINISHED 32 4 AdamW

Table 6.1 Model Runs with different parameters sorted by highest Avg Test Accuracy

(20000). On the other hand, in run 1, the model only achieved an average test accuracy of
0.367 with 10 epochs and a learning rate of 0.01, and a smaller number of samples (2000).
Additionally, it appears that the model’s performance is related to the duration of training.
In general, the model performed better when the training duration was longer. For example,
in run 10, the model achieved an average test accuracy of 0.758 with a training duration of
3.8 hours, while in run 1, the model only achieved an average test accuracy of 0.367 with a
training duration of 6.8 minutes.
It’s also worth noting that the optimizer used in all of the runs is AdamW. This is a variant of
the Adam optimizer that includes weight decay, which can help prevent overfitting by adding
a regularization term to the loss function.
In terms of the model’s overall performance, it seems that the model is achieving decent
results, with average test accuracies ranging from 0.367 to 0.758. However, there is room
for improvement, as some runs had failed or had higher validation losses, indicating that
the model may be overfitting or not generalizing well to the validation data. Tuning the

6.1 Evaluation 45

hyperparameters and increasing the number of samples may help improve the model’s
performance.

6.1.2 Data Profiling

To simulate drift in the 20newsgroup dataset, batches of streams were used. This means that
the data was divided into smaller chunks, or streams, and processed in batches. This allows
for more frequent updates to the model, as the data is continuously being refreshed with new
streams.

Fig. 6.2 Profiling Summary

The above function generates a summary of the profiling data for our dataset. This
summary can include statistical measures such as mean, minimum, and maximum values
for various metrics, as well as plots and charts that help you understand the distribution and
trends in the data.

The summary_drift_report() function generates a report that helps you understand the
magnitude and direction of the drift in a dataset, as well as the potential causes of the drift.
The report includes statistical measures such as mean, median, minimum, and maximum
values for various metrics, as well as plots and charts that help you visualize the drift over
time.

Based on the simulation results, there was drift detected in one of the two features in
the dataset, which was the "description" feature. The drift was in the range of 0.00 to 0.05.
There was no evidence of drift in the other feature, "label". The target features for the drift
analysis were "description" and "label", and the reference feature used for comparison was
"profile_view_drift".

46 Result & Analysis

Fig. 6.3 Drift Profiling

The p-value for the "description" feature was 1.0, which suggests that there is no statis-
tically significant difference between the reference feature and the target feature. On the
other hand, the p-value for the "label" feature was 5.5e-11, which indicates that there is a
very strong statistical significance between the reference and target features. This suggests
that there has been a significant change in the statistical properties of the "label" feature over
time.

The total count of observations in the dataset was 4.1K, with 2034 observations for both
the "description" and "label" features. The mean value for the "description" feature was 0,
while the mean value for the "label" feature was 1.426.

Based on these results, it appears that there has been a significant change in the statistical
properties of the "label" feature over time, as indicated by the low p-value and the high mean
value. It is possible that this change is due to some external factor, such as a change in the
data generating process or a change in the data collection or processing system.

6.1 Evaluation 47

Fig. 6.4 Drift detected in the logged data

A double histogram plot is a type of chart that compares the distribution of two sets
of data by displaying two histograms side by side. In the figure 6.4, there is a comparison
between two profiles of data logged into Whylogs profiler namely, Target and Reference.
We can draw conclusion that the target data is very insignificant overall compared to the
reference drift simulated dataset.

Fig. 6.5 Drift detected in the logged data at Whylogs Platform

We were successful in capturing drift in the dataset over a period of time using the
WhyLogs platform. By using the visualization.summary_drift_report() and visualiza-
tion.double_histogram() functions, we were able to identify changes in the statistical
properties of the data and understand the magnitude and direction of the drift.

48 Result & Analysis

The solution is going to help improve pipelines by data logging and monitoring because
it allows us to track the flow of data through the system, visualize the dependencies between
different components, and identify potential issues or bottlenecks. By understanding how the
system is behaving in real-time and being able to troubleshoot problems as they arise, we
can ensure the reliability and performance of the system over time.

By logging and monitoring the data, we can also detect drift in the dataset and take
appropriate measures to address it. This can help prevent issues caused by changes in the
data generating process, data collection process, or data storage or processing systems, and
can help us maintain the quality and integrity of the data over time.

6.2 Conclusion

In conclusion, the goal of this project was to investigate the importance of data logging and
monitoring in machine learning operations (MLOps) and to present a comprehensive solution
based on open-source tools such as MLFlow and WhyLogs. The solution was designed to
be production-ready and easily integratable into existing enterprise environments, such as
Microsoft Azure with Docker containers.
To evaluate the effectiveness of the proposed solution, a series of experiments were conducted
using a variety of machine learning models on different datasets. The results of these
experiments were then compared and analyzed to understand the impact of data logging and
monitoring on model performance.
The results of the experiments demonstrated the importance of effective data logging and
monitoring in MLOps. By logging and monitoring key metrics, such as training and validation
loss, and monitoring the performance of models over time, it is possible to identify issues
and take corrective action before they become major problems.
One key finding from the experiments was that the use of open-source tools such as MLFlow
and WhyLogs can significantly improve the effectiveness of data logging and monitoring in
MLOps. These tools provide a range of features, including the ability to track and visualize
metrics, detect and alert on anomalies, and provide insights into model performance. By
leveraging these tools, organizations can gain a deeper understanding of their models and take
more informed decisions about how to optimize and deploy them. Another important finding
was the need to address the issue of model drift, which can arise when the distribution of data
used for training differs from the distribution of data used for inference. By implementing
techniques for detecting and mitigating drift, organizations can ensure that their models
remain accurate and reliable over time.
The project has successfully demonstrated that effective data logging and monitoring is

6.3 Future Scope 49

critical to the success of MLOps. By implementing the right tools and practices, organizations
can improve the performance and reliability of their machine learning models, and ensure
they are well-suited for deployment in real-world production environments.

6.3 Future Scope

There are several potential areas for future work and development in this project.
One potential direction is to expand the scope of the data logging and monitoring solu-
tion to include additional open-source tools and technologies. For example, tools such
as Prometheus Prometheus (2012) and Grafana Labs (2018) could be integrated into the
solution to provide more advanced monitoring and visualization capabilities. Additionally,
there may be opportunities to integrate the solution with other machine learning platforms
and frameworks, such as TensorFlow or PyTorch, to provide even greater flexibility and
scalability.
Another area for future work is to further explore the issue of model drift and develop more
advanced techniques for detecting and mitigating it. This could involve building more so-
phisticated drift detectors that can identify subtle changes in the data distribution and trigger
corrective action accordingly. Additionally, there may be opportunities to develop techniques
for actively avoiding drift by adjusting the training data or modifying the model architecture.
A third potential direction for future work is to explore the use of the data logging and
monitoring solution in real-world production environments. This could involve deploying
the solution in enterprise environments, such as Microsoft Azure with Docker containers,
and testing its performance and reliability under real-world conditions. This work could also
involve gathering feedback from users and incorporating their insights and suggestions into
future versions of the solution.
Finally, it may be interesting to study the impact of data logging and monitoring on the overall
performance and reliability of machine learning models in different types of applications.
For example, the solution could be tested on models used for image classification, natural
language processing, or time series forecasting, to understand how it affects the accuracy and
reliability of these models in different contexts.
There are many exciting opportunities for future work and development in this project, and it
is likely that the data logging and monitoring solution will continue to evolve and improve
over time as new tools and technologies emerge.

References

Abadi, M., Barham, P., Chen, J., Chen, Z., Davis, A., Dean, J., Devin, M., Ghemawat, S.,
Irving, G., Isard, M., Kudlur, M., Levenberg, J., Monga, R., Moore, S., Murray, D.G.,
Steiner, B., Tucker, P.A., Vasudevan, V., Warden, P., Wicke, M., Yu, Y. and Zhang, X.
(2016) Tensorflow: A system for large-scale machine learning CoRR abs/1605.08695

Ali, R., Farooq, U., Arshad, U., Shahzad, W. and Beg, M.O. (2022) Hate speech detection on
twitter using transfer learning Computer Speech & Language 74, p. 101365

Devlin, J., Chang, M., Lee, K. and Toutanova, K. (2018) BERT: pre-training of deep
bidirectional transformers for language understanding CoRR abs/1810.04805

Hung, B.T. and Huy, T.Q. (2022) Named entity recognition based on combining pretrained
transformer model and deep learning in: Artificial Intelligence and Sustainable Computing
pp. 311–320 Springer

Jing, W. and Bailong, Y. (2021) News text classification and recommendation technology
based on wide & deep-bert model in: 2021 IEEE International Conference on Information
Communication and Software Engineering (ICICSE) pp. 209–216 IEEE

Jouppi, N.P., Young, C., Patil, N., Patterson, D., Agrawal, G., Bajwa, R., Bates, S., Bhatia,
S., Boden, N., Borchers, A. et al. (2017) In-datacenter performance analysis of a tensor
processing unit in: Proceedings of the 44th annual international symposium on computer
architecture pp. 1–12

Ken Lang, L. (1995) Newsweeder: Learning to filter netnews in: Proceedings of the Twelfth
International Conference on Machine Learning pp. 331–339

Kiela, D., Firooz, H., Mohan, A., Goswami, V., Singh, A., Ringshia, P. and Testuggine,
D. (2020) The hateful memes challenge: Detecting hate speech in multimodal memes
Advances in Neural Information Processing Systems 33, pp. 2611–2624

Labs, G. (2018) Grafana documentation

LightningAI et al. (2018) Lightning ai

Mao, Y., Yan, W., Song, Y., Zeng, Y., Chen, M., Cheng, L. and Liu, Q. (2020) Differentiate
quality of experience scheduling for deep learning applications with docker containers in
the cloud arXiv preprint arXiv:2010.12728

Minio (2016) Minio high performance object storage

52 References

Nguyen, G., Dlugolinsky, S., Bobák, M., Tran, V., López García, Á., Heredia, I., Malík, P.
and Hluchỳ, L. (2019) Machine learning and deep learning frameworks and libraries for
large-scale data mining: a survey Artificial Intelligence Review 52(1), pp. 77–124

Paszke, A., Gross, S., Chintala, S., Chanan, G., Yang, E., DeVito, Z., Lin, Z., Desmaison,
A., Antiga, L. and Lerer, A. (2017) Automatic differentiation in pytorch in: NIPS 2017
Workshop on Autodiff

Prometheus (2012) Prometheus - monitoring system time series database

Renggli, C., Rimanic, L., Gürel, N.M., Karlaš, B., Wu, W. and Zhang, C. (2021) A data
quality-driven view of mlops arXiv preprint arXiv:2102.07750

Ruf, P., Madan, M., Reich, C. and Ould-Abdeslam, D. (2021) Demystifying mlops and
presenting a recipe for the selection of open-source tools Applied Sciences 11(19), p. 8861

Shishah, W. (2021) Fake news detection using bert model with joint learning Arabian Journal
for Science and Engineering 46(9), pp. 9115–9127

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L. and
Polosukhin, I. (2017) Attention is all you need CoRR abs/1706.03762

Vyas, P. (2022) Fake news detection on the web: A deep learning based approach

Wang, Y., Yang, W., Ma, F., Xu, J., Zhong, B., Deng, Q. and Gao, J. (2020) Weak supervision
for fake news detection via reinforcement learning in: Proceedings of the AAAI conference
on artificial intelligence vol. 34 pp. 516–523

Webb, G.I., Hyde, R., Cao, H., Nguyen, H.L. and Petitjean, F. (2016) Characterizing concept
drift Data Mining and Knowledge Discovery 30(4), pp. 964–994

Whylabs (2019) Whylogs overview: Whylabs documentation

Xu, P., Shi, S. and Chu, X. (2017) Performance evaluation of deep learning tools in docker
containers in: 2017 3rd International Conference on Big Data Computing and Communi-
cations (BIGCOM) pp. 395–403 IEEE

Zaharia, M., Chen, A., Davidson, A., Ghodsi, A., Hong, S.A., Konwinski, A., Murching,
S., Nykodym, T., Ogilvie, P., Parkhe, M. et al. (2018) Accelerating the machine learning
lifecycle with mlflow. IEEE Data Eng. Bull. 41(4), pp. 39–45

Zhang, X., Zhao, J. and LeCun, Y. (2015) Character-level convolutional networks for text
classification Advances in neural information processing systems 28

Appendix A

Installation

A.1 Conda Requirement

1. channels:
2. conda-forge
3. dependencies:
4. python=3.8
5. pip
6. pip:
7. mlflow
8. sklearn
9. cloudpickle==1.6.0
10. boto3
11. transformers>=4.0.0
12. pandas
13. torch>=1.11.0
14. torchdata
15. torchtext==0.12.0
16. pytorch-lightning==1.7.6
17. protobuf<4.0.0

A.2 Python Environment Requirement

1. python: "3.8"
2. build_dependencies:

54 Installation

3. pip
4. dependencies:
5. mlflow
6. sklearn
7. cloudpickle==1.6.0
8. boto3
9. transformers>=4.0.0
10. pandas
11. torch>=1.13.0
12. torchdata
13. torchtext==0.12.0
14. pytorch-lightning==1.7.6
15. protobuf<4.0.0

A.3 Requirement

1. numpy
2. mlflow
3. sklearn
4. cloudpickle==1.6.0
5. boto3
6. transformers>=4.0.0
7. pandas
8. torch>=1.13.0
9. torchdata
10. torchtext==0.12.0
11. pytorch-lightning==1.7.6
12. protobuf<4.0.0

A.4 Docker Compose Requirement

1. version: "3.9"
2. services:
3. minio:
4. image: minio/minio:latest
5. restart: unless-stopped

A.4 Docker Compose Requirement 55

6. container_name: mlflow_s3
7. ports:
8. "9000:9000"
9. "9090:9090"
10. environment:
11. MINIO_ROOT_USER=${MINIO_ROOT_USER}
12. MINIO_ROOT_PASSWORD=${MINIO_ROOT_PASSWORD}
13. command: server /data --console-address ":9090"
14. networks:
15. internal
16. public
17. volumes:
18. minio_data:/data
19. db:
20. image: mysql/mysql-server:5.7.40
21. restart: unless-stopped
22. container_name: mlflow_db
23. expose:
24. "3306"
25. environment:
26. MYSQL_DATABASE=${MYSQL_DATABASE}
27. MYSQL_USER=${MYSQL_USER}
28. MYSQL_PASSWORD=${MYSQL_PASSWORD}
29. MYSQL_ROOT_PASSWORD=${MYSQL_ROOT_PASSWORD}
30. volumes:
31. db_data:/var/lib/mysql
32. networks:
33. internal
34. mlflow:
35. container_name: mlflow_server
36. image: mlflow_server
37. restart: unless-stopped
38. build:
39. context: ./mlflow
40. dockerfile: Dockerfile
41. ports:

56 Installation

42. "5000:5000"
43. environment:
44. MINIO_ROOT_USER=${MINIO_ROOT_USER}
45. MINIO_ROOT_PASSWORD=${MINIO_ROOT_PASSWORD}
46. MLFLOW_S3_ENDPOINT_URL=http://minio:9000
47. networks:
48. public
49. internal
50. entrypoint: mlflow server --backend-store-uri
mysql+pymysql://${MYSQL_USER}:${MYSQL_PASSWORD}
@db:3306/${MYSQL_DATABASE} --default-artifact-root
s3://${MLFLOW_BUCKET_NAME}/ --artifacts-destination
s3://${MLFLOW_BUCKET_NAME}/ -h 0.0.0.0
51. depends_on:
52. wait-for-db:
53. condition: service_completed_successfully
54. create_s3_buckets:
55. image: minio/mc
56. depends_on:
57. "minio"
58. entrypoint: >
59. /bin/sh -c "
60. until (/usr/bin/mc alias set minio http://minio:9090
’${MINIO_ROOT_USER}’ ’${MINIO_ROOT_PASSWORD}’)
do echo ’...waiting...’ && sleep 1; done;
61. /usr/bin/mc mb minio/${MLFLOW_BUCKET_NAME};
62. exit 0;
63. "
64. networks:
65. internal
66. wait-for-db:
67. image: atkrad/wait4x
68. depends_on:
69. db
70. command: tcp db:3306 -t 90s -i 250ms
71. networks:

A.4 Docker Compose Requirement 57

72. internal
73. networks:
74. internal:
75. public:
76. driver: bridge
77. volumes:
78. db_data:
79. minio_data:

Appendix B

Code

1. #Importing all the libraries that are needed for the code to run.
2. import math
3. import os
4. from argparse import ArgumentParser
5. import logging
6. import numpy as np
7. import pandas as pd
8. import pytorch_lightning as pl
9. import torch
10. import torchtext
11. import torch.nn.functional as F
12. import torchtext.datasets as td
13. from pytorch_lightning.callbacks import (EarlyStopping,

ModelCheckpoint,
LearningRateMonitor,)

14. from sklearn.datasets import fetch_20newsgroups
15. from sklearn.metrics import accuracy_score
16. from sklearn.model_selection import train_test_split
17. from torch import nn
18. from torch.utils.data import Dataset, DataLoader
19. from torch.utils.data.dataset import random_split
20. import torchdata
21. from torchdata.datapipes.iter import IterDataPipe
22. from torchtext.data import functional
23. from torchtext.data.functional import to_map_style_dataset

60 Code

24. from torchtext.datasets import AG_NEWS
25. from transformers import BertModel, BertTokenizer, AdamW
26. import mlflow.pytorch
27. import mlflow.pytorch

1. def get_20newsgroups(num_samples):
2. categories = ["alt.atheism", "talk.religion.misc",

"comp.graphics", "sci.space"]
3. X, y = fetch_20newsgroups(subset="train",

categories=categories, return_X_y=True)
4. return pd.DataFrame(data=X, columns

["description"]).assign(label=y)
.sample(n=num_samples)

1. def get_ag_news(num_samples):
2. # reading the input
3. td.AG_NEWS(root="data", split=("train", "test"))
4. train_csv_path = "data/AG_NEWS/train.csv"
5. return (pd.read_csv(train_csv_path, usecols=[0, 2],

names=["label", "description"]).assign(
label=lambda df: df["label"] - 1)

6. #make labels
7. zero-based.sample(n=num_samples))

1. class NewsDataset(IterDataPipe):
2. def init(self, tokenizer, source, max_length, num_samples, dataset="20newsgroups"):
3. """
Custom Dataset - Converts the input text and label to tensor
:param tokenizer: bert tokenizer
:param source: data source - Either a dataframe or DataPipe
:param max_length: maximum length of the news text
:param num_samples: number of samples to load
:param dataset: Dataset type - 20newsgroups or ag_news
5. """
6. super().init()
7. self.source = source

61

8. self.start = 0
9. self.tokenizer = tokenizer
10. self.max_length = max_length
11. self.dataset = dataset
12. self.end = num_samples
13. def __iter__(self):
14. worker_info = torch.utils.data.get_worker_info()
15. if worker_info is None:

iter_start = self.start
iter_end = self.end

16. else:
per_worker = int(
math.ceil((self.end - self.start) / float(worker_info.num_workers)))

17. worker_id = worker_info.id
18. iter_start = self.start + worker_id * per_worker
19. iter_end = min(iter_start + per_worker, self.end)
20. for idx in range(iter_start, iter_end):
21. if self.dataset == "20newsgroups":
22. review = str(self.source["description"].iloc[idx])
23. target = int(self.source["label"].iloc[idx])
24. else:

target, review = self.source[idx]
target -= 1

25. encoding = self.tokenizer.encode_plus(
review,
add_special_tokens=True,
max_length=self.max_length,
return_token_type_ids=False,
padding="max_length",
return_attention_mask=True,
return_tensors="pt",
truncation=True,)

26. yield {"review_text": review,
"input_ids": encoding["input_ids"].flatten(),
"attention_mask": encoding["attention_mask"].flatten(),
"targets": torch.tensor(target, dtype=torch.long),}

Appendix C

Deployment Code

1. import os
2. from minio import Minio
3. from minio.error import InvalidResponseError
4. accessID = os.environ.get(’MINIO_ROOT_USER’)
5. accessSecret = os.environ.get(’MINIO_ROOT_PASSWORD’)
6. minioUrl = os.environ.get(’MLFLOW_S3_ENDPOINT_URL’)
7. bucketName = os.environ.get(’MLFLOW_BUCKET_NAME’)
8. if accessID == None:

print(’[!] AWS_ACCESS_KEY_ID environment
variable is empty! run \’source .env\’ to
load it from the .env file’)
exit(1)

9. if accessSecret == None:
print(’[!] AWS_SECRET_ACCESS_KEY environment
variable is empty! run \’source .env\’ to
load it from the .env file’)
exit(1)

10. if minioUrl == None:
print(’[!] MLFLOW_S3_ENDPOINT_URL environment
variable is empty! run \’source .env\’ to
load it from the .env file’)
exit(1)

11. if bucketName == None:
print(’[!] AWS_BUCKET_NAME environment variable
is empty! run \’source .env\’ to load it

64 Deployment Code

from the .env file’)
exit(1)

12. minioUrlHostWithPort = minioUrl.split(’//’)[1]
13. print(’[*] minio url: ’, minioUrlHostWithPort)
14. s3Client = Minio(

minioUrlHostWithPort,
access_key=accessID,
secret_key=accessSecret,
secure=False)

15. #Check if the bucket already exists
16. if s3Client.bucket_exists(bucketName):
17. #Delete all objects in the bucket
18. objects = s3Client.list_objects(bucketName, recursive=True)
19. for obj in objects:
20. s3Client.remove_object(bucketName, obj.object_name)
21. #Delete the bucket
22. s3Client.remove_bucket(bucketName)
23. #Create a new bucket with the same name
24. s3Client.make_bucket(bucketName)

1. # Description: Minio Docker image
2. # docker run \
3. # -p 9000:9000 \
4. # -p 9090:9090 \
5. #--name minio-dock \
6. #-v ~/minio/data:/data \
7. #-e "MINIO_ROOT_USER=ROOTNAME" \
8. #-e "MINIO_ROOT_PASSWORD=CHANGEME123" \
9. #quay.io/minio/minio server /data --console-address ":9090"

1. #!/bin/bash
2. docker-compose up -d --build
3. #!/bin/bash
4. docker-compose down

Appendix D

Data Profiling using WhyLabs

1. %pip install -q ’whylogs[mlflow]’
2. %pip install -q scikit-learn matplotlib pandas mlflow-skinny
3. !pip install whylabs-client

1 import os
2 os.environ["WHYLABS_DEFAULT_ORG_ID"] = "org-ZXsw2C"
3 # ORG-ID is case sensistive
4 os.environ["WHYLABS_API_KEY"] \

= "HbKymCA1m3.QtWbFxfCdGAAjAhT51SiBrHqHyLPWFNzCGngIxaBMh9x64Khe7DcP"
6 os.environ["WHYLABS_DEFAULT_DATASET_ID"] = "model-6"
7 The selected model project "My Model

(model-1)" is "model-1"
8 import pandas as pd
9 from sklearn.datasets import fetch_20newsgroups
10 def get_20newsgroups() -> pd.DataFrame:
11 categories = ["alt.atheism", "talk.religion.misc",
12 "comp.graphics", "sci.space"]
13 X, y = fetch_20newsgroups(
14 subset="train", categories=categories, return_X_y=True)
15 dataframe = pd.DataFrame(data=X,

columns=["description"]).assign(label=y)
16 return dataframe
17 # phrase label 0 as alt.atheism and label 1 as talk.religion.misc \
18 and label 2 as comp.graphics and label 3 as sci.space
19 df = get_20newsgroups()

66 Data Profiling using WhyLabs

20 df["label"] = df["label"].replace(
21 {0: "alt.atheism",

1: "talk.religion.misc",
2: "comp.graphics",
3: "sci.space"})

22 df.head()
23 dataset = df
24 dataset.head()

1 from datetime import datetime, timezone, timedelta
2 #shuffle and divide dataset into 7 different dates and
3 load into a list called daily_batches
4 daily_batches = []
5 for i in range(7):
6 dataset = dataset.sample(frac=1)
7 daily_batches.append(dataset.iloc[:int(len(dataset)/7)])
8 #add a date column to each batch
9 for i in range(7):
10 daily_batches[i]["date"] = datetime.now(timezone.utc) + timedelta(days=i)
11 #concatenate all batches into one dataframe
12 dataset = pd.concat(daily_batches)
13 dataset.head()
14 #show full dataset sort by all date
15 dataset.sort_values(by="date")
16 dataset

1 import subprocess # <-- add subprocess library
2 import numpy as np
3 import pandas as pd
4 from sklearn.datasets import fetch_20newsgroups
5 import time # <-- add time library
6
7 # Load the 20 Newsgroups dataset
8 data = fetch_20newsgroups()
9 X = dataset[’description’]

67

10 y = dataset[’label’]

11 # Set the percentage of data points to delete or change in
each modified dataset

12 percentages = [0, 10, 20, 30, 40, 50]
13
14 dataset = pd.DataFrame() # <-- define dataset variable
15 # Create a batch of drift datasets
16 while True:
17 for percentage in percentages:
18 # Create copies of the original dataset
19 X_modified = X.copy()
20 y_modified = y.copy() # <-- create copy of labels array
21
22 # Convert to NumPy arrays
23 X_modified = X_modified.values # <-- convert to NumPy array
24 y_modified = y_modified.values # <-- convert to NumPy array
25
26. # Delete a percentage of the data points
27. num_to_delete = int(len(X_modified) * percentage / 100)
28. indices_to_delete = np.random.choice(len(X_modified),

num_to_delete, replace=False) #<-- set replace=False
29. X_modified = np.delete(X_modified, indices_to_delete, axis=0)
30. y_modified = np.delete(y_modified,

indices_to_delete, axis=0) # <-- delete corresponding labels
31. # Change the labels of a percentage of the data points
32. num_to_change = int(len(X_modified) * percentage / 100)
33. indices_to_change = np.random.choice(len(X_modified),

num_to_change, replace=False) # <-- set replace=False
34. y_modified[indices_to_change] = np.random.randint(0, 20, num_to_change)
<-- change labels
35. print(f’X_modified.shape = {X_modified.shape},

y_modified.shape = {y_modified.shape}’)
<-- print shapes

36. # Convert the modified dataset to a Pandas dataframe
37. drift_dataset = pd.DataFrame({’description’: X_modified,

68 Data Profiling using WhyLabs

’label’: y_modified})
38. # Append the new batch of data to the dataset
39. dataset = dataset.append(drift_dataset, ignore_index=True)
40. # Log the new batch of data
41. profile_result = why.log(drift_dataset)
42. profile_view_drift = profile_result.view()
43. profile_result.writer("whylabs").write()
44. # Wait 5 seconds before generating the next batch of data
45. time.sleep(5)

1. drift_dataset.head()
2. # datatype of the dataset
3. dataset.dtypes
4. import whylogs as why
5. profile_result = why.log(dataset)
6. profile_view = profile_result.view()
7. profile_result.writer("whylabs").write()
8. import whylogs as why
9. profile_result = why.log(drift_dataset)
10. profile_view2 = profile_result.view()
11. profile_result.writer("whylabs").write()
12. profile_view.to_pandas()
13. profile_view2.to_pandas()

1. # Data Drift with whylogs
2. from whylogs.viz import NotebookProfileVisualizer
3. visualization = NotebookProfileVisualizer()
4. visualization.set_profiles

(target_profile_view=profile_view,
reference_profile_view=profile_view_drift)

5. visualization.profile_summary()
6. visualization.summary_drift_report()
7. visualization.double_histogram(feature_name="label")

	Table of contents
	List of figures
	List of tables
	1 Introduction
	1.1 The Evolution of Machine Learning and Its Adoption in Business
	1.2 Advantages of Open Source Technology for Machine Learning
	1.3 Key Strategies adopted by Enterprises in building a robust ML Pipeline
	1.4 Ensuring Continuous Maintenance of Deep Learning Models
	1.5 PyTorch vs TensorFlow: Choosing a Deep Learning Framework
	1.6 AI and Deep Learning for News Classification
	1.7 Benefits of Cloud-Based Machine Learning Infrastructure
	1.8 Factors that Contribute to Deep Learning Model Failure in Production
	1.9 Data Logging and Monitoring

	2 Literature Review
	2.1 Introduction
	2.2 Data Logging and Monitoring in MLOps
	2.3 MLFlow and WhyLogs
	2.4 Enterprise Machine Learning Workflows
	2.5 Production-Ready Machine Learning
	2.6 Microsoft Azure Machine Learning
	2.7 Docker for Machine Learning
	2.8 Drift Detection in Machine Learning Models
	2.9 Minio
	2.10 Open Source Machine Learning
	2.11 MLOps in the Cloud
	2.12 Conclusion

	3 State of the Art
	3.1 Self-Attention in Transformers: A Deep Learning Revolution
	3.2 Understanding BERT: A State-of-the-Art Natural Language Processing Model
	3.3 BERT Architecture
	3.4 Comparing BERT Uncased and Cased Models
	3.5 Fine-tuning BERT for News Classification
	3.6 Managing Machine Learning Lifecycle with MLFlow
	3.7 Tracking and Managing ML Experiments with MLFlow
	3.8 Data Management with PyTorch's Lightning Data Module

	4 Problem Statement
	4.1 Aim & Objective
	4.2 Scope & Limitations
	4.2.1 Scope of the Research
	4.2.2 Limitations

	5 Implementation
	5.1 Architecture Diagram
	5.2 Pipeline Explanation
	5.3 Logging & Monitoring using MLFlow and WhyLogs
	5.4 Dataset
	5.4.1 20NewsGroups
	5.4.2 AG News

	5.5 Azure Docker Deployment
	5.5.1 Azure Virtual Machine Configuration

	5.6 Docker Deployment
	5.7 Data Monitoring using Whylogs
	5.8 Whylabs Data Profiling
	5.9 Minio: Distributed Object Storage

	6 Result & Analysis
	6.1 Evaluation
	6.1.1 Model Comparison
	6.1.2 Data Profiling

	6.2 Conclusion
	6.3 Future Scope

	References
	Appendix A Installation
	A.1 Conda Requirement
	A.2 Python Environment Requirement
	A.3 Requirement
	A.4 Docker Compose Requirement

	Appendix B Code
	Appendix C Deployment Code
	Appendix D Data Profiling using WhyLabs

