Q1 & 2.

Paper Context –

 There has been a global increase in hate speech, mounting several extreme violence. The law of some countries describes hate speech as speech, gesture or conduct, writing, or display that incites violence or prejudicial action against a protected group, minority, or individually based on their membership of the group.

The current state of hate speech detection –

Self-regulated by social media: Self-imposed definitions, guidelines, policies. Responses are generally reactive, i.e., a problem dealt with after victim complaints—human moderators.
Social media platforms like Meta, Twitter, and YouTube are overburdened by the rapid increase in the investigation of sensitive issues online and making it tougher to resolve the legal problems with government bodies. Analyzing slang and expressions across cultures, languages, and regions require a more robust state-of-the-art solution based on cutting-edge artificial intelligence techniques.
The paper "Hate speech detection using static BERT embeddings" authored by Gaurav Rajput and co-authored by Narinder Singh punn, Sanjay Kumar Sonbhadra, and Sonali Agarwal have worked their way towards contributing a method in reducing false positives in hate speech detection. Using a combination of multiple DNN models trained on the ETHOS dataset, a performance analysis is drawn by integrating word embeddings with static BERT embeddings (BiLSTM + static BE), attaining a significant increase of 8.72%.
The trained model with millions of parameters effectively detects the most challenging hate speech violations by analyzing different forms of complex content like images and videos.

Technical Gap Identified –
· The distinction between sub categories
· Dataset mostly English
· Small Data Size – Laborious Data Labelling
· Varied ML approach not converging to a solution
· Bias in Dataset Annotations

A fine-tuned BERT often outperforms other state-of-the-art deep neural networks in the same natural language processing test, as has been noticed when researchers first started employing BERT for these tasks, as demonstrated by the gap in past research efforts emphasized in the publication.The results of Mollas' experiment supported this conclusion.
The experiments in the study test how well-tuned BERT works when paired with other deep learning models, and they use this as their inspiration.
Providing a combination of DNNs with static BERT embedding increases the performance of hate speech detection.

Problem Statement Addressed in the Paper –

 The problem is to increase the performance of the hate speech detection classifier trained on the ETHOS hate speech detection dataset by replacing and integrating static BERT embeddings.
Plan of Action and Methodology –

The proposed method emphasizes the role of BERT-based embedding in the hate speech detection framework by combining static BERT embedding with DNNs to retrieve contextual information.
To create the static BERT embedding matrix, which depicts the embedding for each word in the dataset, a sizable corpus of the dataset was first employed. The presence of hate is then determined by utilizing DNN classifiers to analyze this matrix.

[image:]
The embedding matrix contains an embedding for each word in the dataset. Each row of the matrix contains the embedding for a separate word.
Natural Language expressions are converted into vectors and sent in fixed dimensions to the DNNs (static). BERT contextually embeds each word based on how it appears in a sentence (hence the same word has different embeddings depending on the usage context). Static word embeddings give each word its own static embedding regardless of the context in which it is used. The dictionary can hold every contextualized embedding for every word by pushing embeddings into the vector corresponding to each unique word.One can determine the static BE of a word by computing the mean of the vector holding the word's contextualized BERT embedding. For terms not in the lexicon, BERT creates their embeddings and breaks them down into subwords.
The embeddings of subwords are employed to build the embedding of a phrase that wasn't in the vocabulary.

Finally, they create the embedding matrix using Keras Tokenizer and static BERT embeddings.
The authors have referenced previous related work on the topic and tried a fine-tune BERT model with a combination of BiLSTM and static BERT embeddings, which outperform all existing models.

Results and Findings –
[image:]

The results on various DNNs explain that deep neural networks with static BERT embeddings outperform the same deep neural networks that use embeddings as fastText, GloVe, or fastText + GloVe in all metrics. DNNs like CNN using attention LSTM CNN + LSTM, BiLSTM and BiLSTM using attention the average (avg) increase in F1-score is 3.56%, accuracy is 3.39%, precision is 3.40%, recall is 3.55% and sensitivity is 2.37%. Hence, it is evident that static BERT embeddings provide better feature representation than fastText, GloVe, or fastText + GloVe.
Furthermore, BiLSTM using static BERT embeddings (BiLSTM + static BE) performs better in all metrics than other DNNs under consideration.

Expected Answer –

Hate speech is an advanced research area, and new development is in process. One such possible answer is implementing methods of quarantining hate speech and isolating hate words in a way identifying offensive posts reaching a larger audience.

[image:]

References –
1. Rajput, G., Singh punn, N., Sonbhadra, S. K., and Agarwal, S., “Hate speech detection using static BERT embeddings”, arXiv e-prints, 2021.
2. Deep learning for hate speech identification in tweets: Badjatiya, P., Gupta, S., Gupta, M., and Varma. Pages 759–760 of the book Proceedings of the 26th International Conference on World Wide Web Companion (2017)
3. Neural machine translation by simultaneously learning to align and translate, D. Bahdanau, K. Cho, and Y. Bengio. Preprint: 1409.0473, arXiv (2014)
4. Automated hate speech identification and the issue of objectionable language. Davidson, T., Warmsley, D., Macy, and I. Weber. International AAAI Conference on Web and Social Media Proceedings, vol (2017)
5. Ethos: an online hate speech identification dataset, Mollas, I., Chrysopoulou, Z., Karlos, S., Tsoumakas, G. Preprint accessed at arXiv:2006.08328 (2020)
6. Allan, R. (2017, June 27). Hard questions: Who should decide what is hate speech in an online global community? Facebook Newsroom. Retrieved January 28, 2019 from https://newsroom.fb.com/news/2017/06/hard-questions-hate-speech/.
7. Ullmann, S., Tomalin, M. Quarantining online hate speech: technical and ethical perspectives. Ethics Inf Technol 22, 69–80 (2020). https://doi.org/10.1007/s10676-019-09516-z

Q3.

Business Understanding
The problem statement is to identify and detect the gender of bloggers based on a corpus of textual data to evaluate and determine gender for potential usage of Market Research and Gender Targeting for personalized content recommendation.

Data Understanding
The dataset consists of two columns: "BLOG" and "GENDER."
There are a total of ~2599 records with 1300 Females and 1299 Males.[image:]

Data Preparation
The raw data was analysed using statistical analysis. Nulls were identified and dropped as it was insignificant to the model.
[image:]
Exploratory data analysis comprised of Tokenization and Regex was also used to remove symbols and noise from the textual dataset.
[image:]

[image:]
The gender column was mapped to 0 & 1 respectively for Males and Females.
[image:]
CountVectoriser was used to transform the BLOG training data into vector matrix. It implies a sparse representation of the data.
[image:]
[image:]

Modelling
After data was processed it was split into 80:20 ratio and the dataset was further trained onto 7 different machine learning algorithm.
1. Logistic Regression
2. Naïve Bayes
3. Support Vector Machine
4. K-Nearest Neighbours
5. Decision Tree
6. Random Forest
7. Multi-Layer Perceptron Classifier

Evaluation
1. Logistic Regression
[image:]

2. Naïve Bayes
[image:]

3. Support Vector Machine
[image:]

4. K-Nearest Neighbours
[image:]

5. Decision Tree
[image:]

6. Random Forest
[image:]

7. Multi-Layer Perceptron Classifier
[image:]

In this performance comparison Naïve Bayes and Multi-Layer perceptron are two of the best performing models. Where Naïve Bayes has an accuracy of 70% but relatively a higher recall rate at 85%, whereas in MLP the accuracy is 72% which is 2% better than the Naïve Bayes and recall stood at 72%.

In my verdict, I would choose Naïve Bayes if the data size is less. And in case the dataset is more I would look forward to deploy MLP model into a production given it will outperform the existing metrics with more data in place.

Deployment
I have used pickle to save the performance of my model as a checkpoint so I can load the model from there to make inference.
Now the pickle file can be deployed in multiple ways as loading it on Flask/Heroku/StreamLit app or consuming as a REST API endpoint.
[image:]
RapidMiner Results

Classification Overview
The below auto-model is an extension on RapidMiner which helps to build predictive model end to end from loading raw data pre-processing to modelling and deployment. On running a benchmark test on the auto model following results have been achieved based on gender classification on blog posts.

[image:]
It's evident from the results above that the best model suggested by the application is Support Vector Machine with the least Classification Error – 32.7% at the same time Decision Tree is a faster model with runtime of 8mins 49 sec but takes a hit in the accuracy of the prediction as a trade-off having highest classification error.
Note: Due to technical glitches and heap issues Logistic Regression and Gradient Boosted Trees were not able to finish modelling and had to skip in the comparison.
[image:]
The below comparison depicts the 10 bins on the test data with a decreasing confidence score. Where the highest confidence values are in the first bin and so on. If we see the centre of the chart, we can see that the model would correctly classify 62% of the target data with only using 50% population data.

Using this representation, we are able to understand how our Support Vector Classifier model is compared against a random guess and translating the difference in lift score.
[image:]

From the below screenshot we can observe a list of performance criteria for our best Classifier – SVM.
The results don’t seem to be tuned but can perform better in real life scenarios with proper data cleansing and data mining.

[image:]

The below ROC curve depicts the classification efficiency of all the model trained using RapidMiner’s Auto-modelling. On the x-axis there are false positives (FPR) and true positives in the y-axis for all 7 models respectively.
[image:]

Performance Comparison
Overall fine-tuned Machine Learning models still outperforms RapidMiner results. On the contrary, models trained on RapidMiner eases up the model development time which is a noticeable profit so that a Data Scientist or Artificial Intelligence Engineer can better spend time in preparing domain understanding and ways to improving optimization and performance rather than spending time into building redundant time-consuming models.

image9.png
1 blog_gender_dataset.groupby(’GENDER").describe()

v 08
BLOG
count
GENDER
Foo1300
M 1299

unique top

1294 W elcome to the February 28, 2010 edition of
1294 Welcome to Grade 1: "Alright students, what do.

freq

image3.png
1 blog_gender_dataset.dropna(inplace=True)
2 blog_gender_dataset['GENDER'].value_counts().to_frame()

v o0

GENDER
F 1300
M 1299

image12.png
1 #Tokenization
2 text_tokenization = blog_gender_dataset.copy()

v o0ss Python

1 text - text_tokenization['BL0G'][6]
2 text
v oz Python

Beyond Getting There: What Travel Days Show Us\n\nToday’s guest post is by Gillian at One-Giant-Step.com
sums up for me that imperceptible change that happens when you travel. you start appreciating things you never
thought you would. In that process, maybe you even learn a new way to see the world.\n\n\n\nkho is it that
said “It’s not about the destination, it’s about the journey”? Nine months of full time traveling has proven
to me that this is absolutely true.\n\nBefore leaving on this trip the thought of an & or 10 hour bus trip was
pretty daunting. The longest trips we’d taken were on planes, uhere they serve drinks and meals and we can
pass the time watching movies. Eight hours on a bus, without the same amenities sounded like torture but e
jumped in right from the start with a 22 hour ride from Lima to Cusco that, while not the most comfortable
ride, got us into the swing of things pretty quickly.\n\nOnce we got a routine down.snacks packed, books
prepared, podcasts ready.and had determined our favorite seats.on the drivers side, no window bar blocking the
view, no children nearby.bus journeys became easy and now travel days are some of my favorite

image1.png
1 #loise Removal
2 result = re.sub(r'[\.\2\I\,\:
3 print(result)

v oss

. text)

Python
Beyond Getting There What Travel Days Show Us

Today’s guest post is by Gillian at One-Giant-Stepcom suns up for me that imperceptible change that happens
when you travel.. you start appreciating things you never thought you would In that process maybe you even
learn a new way to see the world

Who is it that said “It’s not about the destination it’s about the journey” Nine months of full time traveling
has proven to me that this is absolutely true

Before leaving on this trip the thought of an 8 or 16 hour bus trip was pretty daunting The longest trips we’d
taken were on planes where they serve drinks and meals and we can pass the time watching movies Eight hours on
2 bus without the same amenities sounded like torture but we jumped in right from the start with a 22 hour
ride from Lima to Cusco that while not the most comfortable ride got us into the swing of things pretty

image17.png
1 blog_gender_dataset['gender_encoded'] = blog_gender_dataset.GENDER.map({'M’:@,

2 blog_gender_dataset.head()

BLOG GENDER gender_encoded

v oo
0 Beyond Getting There: What Travel Days Show U
1 I remember so much about the island; the large.
2 Ihave had asthma and allergies my entire lfe.
3 Thelast few days have been an emotional rolle.
a If you lined up all the teachers and staff in

13

-z El

1

o o

1)

image8.png
1 from sklearn.feature_extraction.text import CountVectorizer
2 vect = CountVectorizer()
3 X_train = vect.fit_transform(X_train)
4 X_train
v s

<2079x43805 sparse matrix of type '<class 'numpy.int64’>’
ith 417770 stored elements in Compressed Sparse Row format>

image23.png
1 X_test= vect.transform(X_test)
2 X_test

v 03

<520x43805 sparse matrix of type "<class 'numpy.int64’>’
with 96392 stored elements in Compressed Sparse Row format>

image5.png
1 #logisticRegression
2 1r - LogisticRegression()
3 Ir.fit(X_train, y_train)
4 y_pred_class = 1r.predict(X_test)
5 print(’Accuracy’,metrics.accuracy_score(y_test, y_pred_class))
6 print(’classification report’,metrics.classification_report(y_test, y_pred_class))
7 print('Recall’,metrics.recall_score(y_test,y_pred_class))
v o

Accuracy ©.6653846153846154

classification report precision recall fi-score support
6 .65 .67 .66 252
1 .68 .66 .67 268
accuracy .67 520
macro avg .67 .67 .67 520
weighted avg .67 .67 .67 520

Recall 0.664179104477612

image13.png
1 #NaiveBayes
2 nb = MultinomialNB()
3 nb.fit(X_train, y_train)
4 y_pred_class = nb.predict(X_test)
5 print(’Accuracy’,metrics.accuracy_score(y_test, y_pred_class))
6 print(’classification report’,metrics.classification_report(y_test, y_pred_class))
7 print('Recall’,metrics.recall_score(y_test,y_pred_class))

v oo

Accuracy ©.7019230769230769

classification report precision recall fi-score support
6 0.78 .54 .64 252
1 .66 0.85 0.75 268
accuracy .70 520
macro avg e.72 .70 .69 520
weighted avg e.72 .70 .69 520

Recall ©.8544776119402985

image14.png
1 #sve
2 svc = sve()
3 sve.fit(X_train, y_train)
4 y_pred_class = svc.predict(X_test)
5 print(’Accuracy’,metrics.accuracy_score(y_test, y_pred_class))
6 print(’classification report’,metrics.classification_report(y_test, y_pred_class))
7 print('Recall’,metrics.recall_score(y_test,y_pred_class))

v 103

Accuracy ©.6538461538461539

classification report precision recall fi-score support
0.63 .69 .66 252
.68 0.62 .65 268
accuracy .65 520
macro avg .66 .66 .65 520
weighted avg .66 .65 .65 520

Recall ©.6156716417910447

image11.png
1 s
2 knn = KiieighborsClassifier()
3 knn.fit(X_train, y_train)

® 4y pred class = knn.predict(X_test)
5 print(’Accuracy’,metrics.accuracy_score(y_test, y_pred_class))
6 print(’classification report’,metrics.classification_report(y_test, y_pred_class))
7 print('Recall’,metrics.recall_score(y_test,y_pred_class))

v oox

Accuracy ©.5788461538461539

classification report precision recall fi-score support
6 .56 .64 0.60 252
1 .61 0.52 .56 268
accuracy .58 520
macro avg .58 .58 .58 520
weighted avg .58 .58 .58 520

Recall ©.5186567164179104

image6.png
Decision Tree

1
2
3 dt - DecisionTreeClassifier()
4 dt.fit(X_train, y_train)

5 y_pred_class = dt.predict(X_test)

6 print(Accuracy’,metrics.accuracy_score(y_test, y_pred_class))

7 print(’classification report’,metrics.classification_report(y_test, y_pred_class))
8 print('Recall’,metrics.recall_score(y_test,y_pred_class))

v o1

Accuracy ©.551923076923077

classification report precision recall fi-score support
.54 .53 .53 252
.56 0.57 0.57 268
accuracy .55 520
macro avg .55 .55 .55 520
weighted avg .55 .55 .55 520

Recall ©.5746268656716418

image7.png
1 # Random Forest

2 rf = RandomForestClassifier()

3 rf.fit(X_train, y_train)

4 y_pred_class = rf.predict(X_test)

5 print(’Accuracy’,metrics.accuracy_score(y_test, y_pred_class))

6 print(’classification report’,metrics.classification_report(y_test, y_pred_class))
7 print('Recall’,metrics.recall_score(y_test,y_pred_class))

v 28

Accuracy ©.6846153846153846

classification report precision recall fi-score support
.68 .65 .67 252
.69 e.71 .70 268
accuracy .68 520
macro avg .68 .68 .68 520
weighted avg .68 .68 .68 520

Recall ©.7126865671641791

image19.png
1 # NP Classifier

2 mlp - MLPClassifier()

3 mlp.fit(X_train, y_train)

4 y_pred_class = mlp.predict(X_test)

5 print(’Accuracy’,metrics.accuracy_score(y_test, y_pred_class))

6 print(’classification report’,metrics.classification_report(y_test, y_pred_class))
7 print('Recall’,metrics.recall_score(y_test,y_pred_class))

v m3Ts

Accuracy ©.7211538461538461

classification report precision recall fi-score support
e.71 0.72 e.71 252
0.73 0.72 0.73 268
accuracy 0.72 520
macro avg e.72 0.72 0.72 520
weighted avg e.72 0.72 0.72 520

Recall ©.7238805970149254

image20.png
® 1 import pickle as pk®
v oz

1 pk.dump(mlp,open("./model/neuralnetnodel.pkl”, "wb"))
v

1 pk.dump(nb,open(". /model/naivebayesmodel.pkl”, ‘wb"))

v ols

image22.png
Haze

81 //Natural Language Processing Assignment Repository/BlogGenderClassificationAutoModel - RapidMiner Studio Educational 9.10.008 @ TthHokage - a X
Flle Edt Process View Connections Sefings Extensions _Help
) (=W >[N Views:| Design Resuts | TumoPrep | AutoModel | Deployments Find data, operators..etc Al stuio v
AutoModel |
Load Data SelectTask Prepare Target Selectlnputs Model Types Results ®
« RESTART { BACK
Results Overview
Production odel N
Number of Models: 121
» 7 DeepLeamning Classification Error Runtimes (ms)
» 7 Decision Tree oo 25000000 ° 7oo00 §
e0om £
0% 20000000 000 2
») Random Forest 00% £ 1500000 0000 &
0% 10000000 000 2
= 20000 =
100%
b) Gradient Boosted Trees 5000000 L] ° - 10000 Z
00% o I
~ 0 Support Vector Machine & & K
Model f ra
Weights o
‘Simulator ¢
Performance
LiftChart Classifcaton Eror v | ‘ Model Classification Error ‘Standard Deviation Gains Total Time Training Time (1,000 Ro... |~ Scoring Time (1,000 Ro... Deploy
Optimal Parameters Naive Bayes 46.0% +18% 54 1Bmin13s 198 ms 185 Deploy A
Predictions Generalized Linear Model 362% =14% 20 13min51s s 7s Deploy
Production odel
Logistic Regression Eror Eror Eror Eror Eror Eror Deploy
~ @ General Fast Large Margin 33.9% =11% 238 1min21s 172ms 155 Deploy
Data Deep Leamning 35.0% z32% 222 10mins3s 6s 155 Deploy
Statstics
o Decision Tree & & a7% =28% o smindgs s40ms 125 Deploy
g
Weights by Correlation Random Forest 455% 220% 52 7hours 32 min 435 5s s Deploy
v Gradient Boosted Trees Error Eror Eror Eror Error Eror Deploy =
SAVE RESULTS ‘Support Vector Machine. 05 2% £13% 256 1 hours 48 min §7 s 7s Tmin11s Deploy v h
s0°c NG 314
ProB@eERBOOER A raF Rae 0

N

image21.png
Overview

Accuracy

s00%
250%

5 &
00%

Number of Models: 121

Runtimes (ms)

a
o $
5 &

70000
e0000
s0000
0000
0000
20000
10000

(smow 000) a1 Butioas

image15.png
5l //Natural Language Processing Assignment Repository/

File Edit Process View Connections Sefings Etensions Help

- RapidMiner Studio Educational 9.10.008 @ 7thHokage -

[e~ (]

o [| et [eseree [T oo o eos =P Moo~

»] Deep Learning
» 1 Decision Tree
» ' Random Forest
» | Gradient Boosted Trees
~ ' support Vector Machine

Model

Weights
‘Simulator

Performance

norat
Optimal Parameters
Preactons

Production Model

~ @ ceneral
oats
statistcs
Tots
Weights by Correlation

SAVE RESULTS

Targets

100%

o5%

0%

5%

0%

5%

%

5%

0%

5%

0%

a5

o

3%

0%

2%

2%

15%

0%

5%

0%

Auto Model
Load Daf Select Task Prepare Target Select Inputs Model Types. Results @
Pr———————
e e D
Results Support Vector Machine - Lift Chart
Producion Hodel A

@ Cumulative Coverage of F Ml Correct in Confidence Segment

100%
96%
2%

6%

8%

D

a

0% 2% % % 0% 0% % 0% 0% 100%
Population %

30°C
Haze

I m0e el @

AG S Aam

Pro@dOe N

L)
21-06-2022

image2.png
81 //Natural Language Processing Assignment Repository/BlogGenderClassificationAutoModel - RapidMiner Studio Educational 9.10.008 @ TthHokage - a X
Ele Edi Process View Conneciions Setings Extensions Help

V(=W > . vews | Desn | Reats | Tuvorrss | AuoModel | Deloymens [Arsudo v

Auto Model

Load Data SelectTask Prepare Target SelectInputs Model Types Results ®

o~ 5

« RESTART ~ { BACK |- OPEN PROCESS £ DEPLOY

Results Support Vector Machine - Performance
Producion Hodel 7 ~
Profits
»] Deep Learning
Profits from Model: 257 Profits for Best Option (M): 1 Gain: 256 ‘Show Costs / Benefits...
» 1 Decision Tree
» 9 Random Forest Performances
Criterion Value Standard Deviation
» | Gradient Boosted Trees
Aceuracy 673% 213%
~ 0 Support Vector Machine Classifcation Error 27% 213%
Hodel Auc 733% +20%
Weights
Smutor Precision 69.4% 246%
Performance Recall 622% 239%
Linchart FMeasure 654% 217%
Optimal Parameters
Predictions Sen: v 622% +39%
Production Model ‘Specificity 72.8% +34%
~ @ General
Data Confusion Matrix
Statistics
el ueF class precision
Texts
Weights by Correlation pred 1 270 141 6569%
V| prear 102 220 6928% =

SAVE RESULTS class recall 7258% 61.99% h

o 3¢
Haze

SLo@e=NRBOCCEE M ne Y eww e

image10.png
51 //Natural Language Processing Assignment Repository/BlogGenderClassificationAutoModel ~ RapidMiner Studio Educational 9.10.008 @ 7thHokage

File Edit Process View Connections Sefings Etensions Help

(2)(=/H]-] >

Auto Model

Results

~ e, Comparison
Overview
ROC Comparison

~ 0 Naive Bayes
Wogel
Weights
Simulator
Petormance
Litchar
Predictons
Producton Hodel

» | Generalized Linear Model

~ 1 Logistic Regression
Hodel
Weights
Simulstor
Performance
Lichat
Predicions
Production Hodel

~ 0 FastLarge Margin
Wogel

SAVE RESULTS

30°C
Haze

ROC Comparison

~— Naive Bayes ~— Decision Tree ~— Generalzed Linear Hodel — Support Vector Machine — Fast Large Margin — Deep Learring — Random Forest

108

100

085

050

085

080

075

070

065

060

055

050

045

040

035

030

025

020

015

010

005

000

Views: | Design

Results

Turbo Prep

Auto Model

Load Data Select Task

Prepare Target

Select Inputs

Model Types

Results

o~ 5

« RESTART { BACK

0000 0625 0050 0.075 000 0425 0150 0.475 0200 0225 0250 0275 0300 0325 D350 0375 0400 0.425 0450 0.475 D00 0525 DS0 0475 00D 0.625 0650 075 0700 0725 0750 0.775 0400 0525 0850 D75 0900 0525 0950 075 1000 1025 1050

FCLO@ONEBOCCE T @

A

NG

=) o

55 o
21-06-2022

image4.png
-

H
{ DenseLayer i

Activation
Function: Sigmoid

-

Static BERT

Processed input embedding
matrix

Hate Non-hate

Fig. 2. Block diagram of proposed model.

image18.png
Table 2. Comparative analysis of the performance of various DNNs with and without
static BERT embeddings (BE).

Model F1-Score|Accuracy |Precision|Recall|Specificity
CNN + Attention + FT + GV 74.41 75.15 74.92 |74.35| 80.35
CNN + Attention + static BE | 77.52 77.96 77.89 |77.69| 79.62
CNN + LSTM + GV 72.13 72.94 7347 | 724 | 76.65
CNN + LSTM + static BE 76.04 76.66 77.20 |76.18| 79.43
LSTM + FT 4+ GV 72.85 73.43 73.37 |72.97| 76.44
LSTM + static BE 79.08 79.36 79.38 |79.37| 79.49
BiLSTM + FT + GV 76.85 77.45 77.99 |[77.10| 79.66
BIiLSTM + static BE 79.71 80.15 80.37 (79.76| 83.03
BiLSTM + Attention + FT 76.80 77.34 77.76 |77.00| 79.63
BiLSTM + Attention+static BE| 78.52 79.16 79.67 |78.58| 83.00
GRU + static BE 77.91 78.36 78.59 |78.18| 79.47
BERT 78.83 76.64 79.17 |78.43| 74.31

Bold model names represent static BERT embedding variants of the models
Bold values represent the highest value of any metric among all models

image16.png
P not posted
P~HS

subr

P posted

